Advertisement

Building University timetables using constraint logic programming

  • Christelle Guéret
  • Narendra Jussien
  • Patrice Boizumault
  • Christian Prins
Resoning About Constrainsts
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1153)

Keywords

Tabu Search Logic Program Constraint Satisfaction Problem Timetabling Problem Constraint Logic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abderrahmane Aggoun and Nicolas Beldiceanu. Extending CHIP in order to solve complex scheduling and placement problems. Mathl. Comput. Modelling, 17(7):57–73, 1993.Google Scholar
  2. 2.
    P. Baptiste, G. Le Pape, and W. Nuijten. Incorporating efficient Operations Research algorithms in constraint-based scheduling. In 1st Joint Workshop on Artificial Intelligence and Operational Research, 1995. To appear.Google Scholar
  3. 3.
    N. Beldiceanu and E. Contjean. Introducing global constraints in CHIP. Mathematical and Computer Modelling, 20(12):97–123, 1994.Google Scholar
  4. 4.
    Jacques Bellone, André Chamard, and C. Pradelles. Plane: An evolutive system for aircraft production written in CHIP. In Proceedings of the First International Conference on Practical Applications of Prolog, London, 1992.Google Scholar
  5. 5.
    Christian Bessière. Arc consistency in dynamic constraint satisfaction problems. In Proceedings AAAI'91, 1991.Google Scholar
  6. 6.
    Christian Bessière. Arc consistency for non-binary dynamic CSPs. In Proceedings ECAI'92, 1992.Google Scholar
  7. 7.
    Patrice Boizumault, Yann Delon, and Laurent Péridy. Constraint logic programming for examination timetabling. To appear in Journal of Logic Programming, 1995.Google Scholar
  8. 8.
    Patrice Boizumault, Christelle Guéret, and Narendra Jussien. Efficient labeling and constraint relaxation for solving time tabling problems. In Pierre Lim and Jean Jourdan, editors, Proceedings of the 1994 ILPS post-conference workshop on Constraint Languages/Systems and their use in Problem Modeling: Volume 1 (Applications and Modelling), Technical Report ECRC-94-38, ECRC, Munich, Germany, November 1994.Google Scholar
  9. 9.
    Alan Borning, Michael Maher, Amy Martindale, and Molly Wilson. Constraint hierarchies and logic programming. In Giorgio Levi and Maurizio Martelli, editors, ICLP'89: Proceedings 6th International Conference on Logic Programming, pages 149–164, Lisbon, Portugal, June 1989. MIT Press.Google Scholar
  10. 10.
    J. P. Boufflet and S. Negre. About planning an examination session. In Proceedings ECCO VII, Conference of the European Chapter on Combinatorial Optimization, Milan, Italy, February 1994.Google Scholar
  11. 11.
    J. P. Boufflet and S. Negre. A practical timetable problem. In EURO XII, Operations Research Designing Practical Solutions, Glasgow, United Kingdom, July 1994.Google Scholar
  12. 12.
    Bull SA. AMPHI + user's guide, 1992.Google Scholar
  13. 13.
    Edmund Burke, David Elliman, and Rupert Weare. A Genetic Algorithm for university timetabling. In AISB Workshop on Evolutionary Computing, University of Leeds, UK, April 1994.Google Scholar
  14. 14.
    M. Cangalovié and J.A.M. Schreuder. Exact algorithm fro weighted graphs applied to timetabling problems with lectures of different lengths. European Journal of Operations Research, 1991.Google Scholar
  15. 15.
    M. W. Carter. A survey of practical applications of examination timetabling algorithms. European Journal of Operations Research, 34(2), 1986.Google Scholar
  16. 16.
    Y. Caseau and F. Laburthe. Improved CLP scheduling with task intervals. In 11th International Conference on Logic Programming, 1994.Google Scholar
  17. 17.
    André Chamard, Frédéric Decès, and Annie Fischler. Applying CHIP to a complex scheduling problem. In JICSLP'92, Washington, DC, November 1992. (Submitted).Google Scholar
  18. 18.
    Cosytec SA. CHIP v4 reference manual, 1993.Google Scholar
  19. 19.
    Xavier Cousin. Application de la programmation logique avec contraintes au problème d'emploi du temps. PhD thesis, Université de Rennes I, France, 1993. In French.Google Scholar
  20. 20.
    Dominique de Werra. An introduction to timetabling. European Journal of Operational Research, 19:151–162, 1985.Google Scholar
  21. 21.
    Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solving a Cutting-Stock Problem in Constraint Logic Programming. In Robert Kowalski and Kenneth Bowen, editors, ICLP'88: Proceedings 5th International Conference on Logic Programming, pages 42–58, Seattle, WA, August 1988. MIT Press.Google Scholar
  22. 22.
    Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solving the Car Sequencing Problem in Constraint Logic Programming. In ECAI-88: European Conference on Artificial Intelligence, Munich, August 1988.Google Scholar
  23. 23.
    Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solving Large Combinatorial Problems in Logic Programming. Journal of Logic Programming, 8(1–2):74–94, January–March 1990.Google Scholar
  24. 24.
    Mehmet Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The Constraint Logic Programming Language CHIP. In FGCS-88: Proceedings International Conference on Fifth Generation Computer Systems, pages 693–702, Tokyo, December 1988. ICOT.Google Scholar
  25. 25.
    François Fages, Julian Fowler, and Thierry Sola. Handling preferences in constraint logic programming with relational optimization. In PLILP'94, Madrid, September 1994.Google Scholar
  26. 26.
    R. Feldman and M.C. Golumbic. Optimization algorithms for student scheduling via constraint satisfiability. The Computer Journal, 33(4), 1990.Google Scholar
  27. 27.
    Kenneth D. Forbus and Johan de Kleer. Building Problem Solvers. MIT Press, Cambridge, 1993.Google Scholar
  28. 28.
    Julian Fowler. Preferred constraints as optimization. In Proceedings Journées Françaises de Programmation en Logique, 1993.Google Scholar
  29. 29.
    Eugene Freuder. Partial constraint satisfaction. In IJCAI-89: Proceedings 11th International Joint Conference on Artificial Intelligence, pages 278–283, Detroit, 1989.Google Scholar
  30. 30.
    F. Glover. Tabu search. CAAI Report 88-3, University of Colorado, 1988.Google Scholar
  31. 31.
    F. Glover. Tabu search: a tutorial. Interfaces, 20:74–94, 1990.Google Scholar
  32. 32.
    A. Hertz and D. de Werra. Using tabu search techniques for graph coloring. Computing, 39:345–351, 1987.Google Scholar
  33. 33.
    Michael Jampel and David Gilbert. Fair Hierarchical Constraint Logic Programming. In Manfred Meyer, editor, Proceedings ECAI'94 Workshop on Constraint Processing, Amsterdam, August 1994.Google Scholar
  34. 34.
    Philippe Jégou. Contribution à l'étude des problèmes de satisfaction de contraintes: Algorithmes de propagation et de résolution — Propagation de contraintes dans les réseaux dynamiques. Thèse de doctorat, Université des Sciences et Techniques du Languedoc, Montpellier, France, January 1991. In French.Google Scholar
  35. 35.
    Francisco Menezes, Pedro Barahona, and Philippe Codognet. An incremental hierarchical constraint solver. In Paris Kanellakis, Jean-Louis Lassez, and Vijay Saraswat, editors, PPCP'93: First Workshop on Principles and Practice of Constraint Programming, Providence RI, 1993.Google Scholar
  36. 36.
    G. Le Pape. Programmation par contraintes: une nouvelle forme de débat entre recherche opérationnelle et intelligence artificielle. Bulletin de l'AFIA, (21), April 1995.Google Scholar
  37. 37.
    Projet CSPFlex., Gérard Bel, Éric Bensana, Khaled Ghédira, David Lesaint, Thomas Schiex, Gérard Verfaillie, Christine Gaspin, Roger Martin-Clouaire, Jean-Pierre Rellier, Pierre Berlandier, Bertrand Neveu, Brigitte Trousse, Héne Fargier, Jérôme Lang, Philippe David, Philippe Jansenn, Tibor Kökény, Marie-Catherine Vilarem, and Philippe Jégou. Représentation et traitement pratique de la flexibilité dans les problèmes sous contraintes. In Actes des Journées Nationales du PRC GDR Intelligence Artificielle, Marseille, France, October 1992. In French.Google Scholar
  38. 38.
    Michel Rueher. A first exploration of Prolog-III's capabilities, Software — Practice and Experience, 23, 1993.Google Scholar
  39. 39.
    Michel Rueher and Bruno Legeard. Which role for CLP in software engineering? An investigation on the basis of first applications. In Proceedings of the First International Conference on Practical Applications of Prolog, London, 1992.Google Scholar
  40. 40.
    Smith and Shing. Bin packing. Bulletin of the IMA, 19, 1983.Google Scholar
  41. 41.
    Arabinda Tripathy. A lagrangean relaxation approach to course timetabling. Journal of Operational Research Society, 31:599–603, 1980.Google Scholar
  42. 42.
    Arabinda Tripathy. School timetabling — a case in large binary integer linear programming. Management Science, 30(12), 1984.Google Scholar
  43. 43.
    Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.Google Scholar
  44. 44.
    Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Programming Series. MIT Press, Cambridge, MA, 1989.Google Scholar
  45. 45.
    Pascal Van Hentenryck. Incremental constraint satisfaction in logic programming. In Proceedings 6th International Conference on Logic Programming, 1989.Google Scholar
  46. 46.
    G. M. White and L. Kang. A logic approach to the resolution of constraints in timetabling. European Journal of Operations Research, 61:306–317, 1992.Google Scholar
  47. 47.
    M. Yoshikawa, K. Kaneko, Y. Yomura, and M. Watanabe. A constraint-based approach to high-school timetabling problems: A case study. In Proceedings of AAAI'94 Conference, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Christelle Guéret
    • 1
    • 2
  • Narendra Jussien
    • 1
  • Patrice Boizumault
    • 1
  • Christian Prins
    • 1
  1. 1.École des Mines de NantesNantes Cedex 03France
  2. 2.Institut de Mathématiques AppliquéesAngers Cedex 08France

Personalised recommendations