Employee timetabling, constraint networks and knowledge-based rules: A mixed approach

  • Amnon Meisels
  • Ehud Gudes
  • Gadi Solotorevsky
Resoning About Constrainsts
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1153)


Employee timetabling problems (ETP) usually involve an organization with a set of tasks that need to be fulfilled by a set of employees, each with his/her own qualifications, constraints and preferences. The organization usually enforces some overall constraints and attempts to achieve some global objectives such as a just or equitable division of work. Examples for such problems are: assignment of nurses to shifts in a hospital, or assignment of phone operators to shifts and stations in a service-oriented call-center. One possible approach for solving ETPs is to use constraint processing techniques. Another approach is to model human knowledge into knowledge-based systems for timetabling. The present paper presents an approach to representing and processing employee timetabling problems (ETP) by a combination of explicit representations of some constraints in the network and rule-based processing in which specific heuristics for generic constraints of ETPs are embedded. The mixed-mode approach has been implemented in the form of a commercial software package for defining and solving real world ETPs. Example of a real world ETP is followed through the presentation and is used to experimentally compare standard CSP techniques with the proposed mixed-mode approach.


Constraint networks Timetabling Knowledge-based systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Banks, A. Meisels, and P. van Beek. Timetabling constraint networks — representation and processing, 1995, Submitted to Workshop on AI and OR, January 1995.Google Scholar
  2. 2.
    B. Y. Choueiry and B. Faltings. Temporal abstractions and a partitioning heuristic for interactive resource allocation. In Notes of Workshop on Knowledge-based Production Planning, Scheduling and Control, IJCAI-93, pages 59–72, Chambery, France, 1993.Google Scholar
  3. 3.
    T. Dackie, J. Adhikary, D. R. Gaur, and K. Jackson. Backtrack-free search for resource allocation problems, 1995. Submitted to CONSTRAINT-95, January 1995.Google Scholar
  4. 4.
    R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction problems. Artificial Intelligence, 34:1–38, 1988.Google Scholar
  5. 5.
    M. C. Golumbic. Algorithmic aspects of perfect graphs. Annals of Discrete Mathematics, 21:301–323, 1984.Google Scholar
  6. 6.
    A. Meisels, J. El-Saana, and E. Gudes. Decomposing and solving timetabling constraint networks. Submitted to The AI Jou., 1994.Google Scholar
  7. 7.
    P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational Intelligence, 9:268–299, 1993.Google Scholar
  8. 8.
    F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satisfaction problems. In Proceedings of the 9th European Conference on Artificial Intelligence, pages 550–556, Stockholm, Sweden, 1990.Google Scholar
  9. 9.
    G. Solotorevsky, E. Gudes, and A. Meisels. Raps — a rule-based language for specifying resource allocation and time-tabling problems. IEEE Trans. DKE, 6:681–698, 1994.Google Scholar
  10. 10.
    G. Trzewik, E. Gudes, A. Meisels, and G. Solotorevsky. Traps — time dependent resource allocation language. In Proceedings of the ECAI Workshop on Practical CSPs, pages 65–72, Amsterdam, 1994.Google Scholar
  11. 11.
    E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Amnon Meisels
    • 1
  • Ehud Gudes
    • 1
  • Gadi Solotorevsky
    • 1
  1. 1.Dept. of Mathematics and Computer ScienceBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations