An application of constructive completeness

  • Thierry Coquand
  • Jan M. Smith
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1158)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thorsten Altenkirch, Veronica Gaspes, Bengt Nordström, and Björn von Sydow. A User's Guide to ALF. Chalmers University of Technology, Sweden, May 1994.Google Scholar
  2. 2.
    Jan Cederquist. A machine assisted formalization of pointfree topology in type theory. Licentiate thesis, Chalmers University of Technology and University of Göteborg, Sweden, 1994.Google Scholar
  3. 3.
    H.C.M. de Swart. An intuitionistically plausible interpretation of intuitionistic logic. Journal of Symbolic Logic, 42:564–578, 1977.Google Scholar
  4. 4.
    Albert G. Dragalin. An explicit boolean-valued model for non-standard arithmetic. Publ. Math. Drebecen, 42:369–389, 1993.Google Scholar
  5. 5.
    M. Dummett. Elements of intuitionism. Clarendon Press, Oxford, 1977.Google Scholar
  6. 6.
    G. Kreisel. On weak completeness of intutionistic predicate logic. Journal of Symbolic logic., 27:139–158, 1962.Google Scholar
  7. 7.
    H. M. MacNeille. Partially ordered sets. Transactions of AMS, 42, 1937.Google Scholar
  8. 8.
    Ieke Moerdijk and Erik Palmgren. Minimal models of heyting arithmetik. Technical Report Report U.U.D.M 1995:25, Dept. of Mathematics, Uppsala University, Sweden, June 1995.Google Scholar
  9. 9.
    Henrik Persson. A formalization of a constructive completeness proof for intuitionistic predicate logic. Draft, Chalmers University of Technology, Göteborg, September 1995.Google Scholar
  10. 10.
    G. Sambin. Pretopologies and completeness proofs. Journal of Symbolic Logic, 60:861–878, 1995.Google Scholar
  11. 11.
    Giovanni Sambin. Intuitionistic Formal Spaces — A First Communication. In The Proceedings of Conference on Logic and its Applications, Bulgaria. Plenum Press, 1986.Google Scholar
  12. 12.
    A. Tarski. Der Aussagenkalkül und die Topologie. Fundamenta Mathematicae, 31:103–134, 1938.Google Scholar
  13. 13.
    A. S. Troelstra. Choice Sequences, a Chapter of Intuitionistic Mathematics. Clarendon Press, 1977.Google Scholar
  14. 14.
    A. S. Troelstra and D. van Dalen. Constructivism in Mathematics. An Introduction, volume II. North-Holland, 1988.Google Scholar
  15. 15.
    Wim Veldman. An intuitionistic completeness theorem for intuitionistic predicate logic. Journal of Symbolic Logic, 41:159–166, 1976.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Thierry Coquand
    • 1
  • Jan M. Smith
    • 1
  1. 1.Department of Computing ScienceChalmers University of Technology and Univ. of GöteborgGöteborgSweden

Personalised recommendations