Advertisement

The logic threshold based voting: A model for local feedback bridging fault

  • M. Renovell
  • P. Huc
  • Y. Bertrand
Session 5 Basic Hardware Models
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1150)

Abstract

In order to simulate the effects of a bridging fault it is necessary to accurately determine the intermediate voltage of the shorted nodes and compare it to the logic threshold voltage of the driven gates. This paper presents a model called ”the Logic Threshold Based voting model ” which can be used to determine if a bridging fault with local feedback gives an intermediate voltage which is higher or lower than a given threshold voltage. The approach is extremely faster than the previous ones since no SPICE simulation is required.

Keywords

Test Fault Modelling Bridging Fault 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Maly, ”Realistic Fault Modeling for VLSI Testing”, in Proceeding of Design Automation Conference, pp. 173–180, 1987.Google Scholar
  2. [2]
    F. J. Ferguson and J. P. Shen, ”A CMOS Fault Extractor for Inductive Fault Analysis”, IEEE Transactions on CAD, vol. 7, pp. 1181–1194, Nov. 1988.Google Scholar
  3. [3]
    J. M. Soden and C. F. Hawkins, ”Electrical Properties and Detection Methods for CMOS ICs Defects”, in Proc. of IEEE European Test Conference, pp. 159–167, 1989.Google Scholar
  4. [4]
    S.D. Millman and J. McCluskey, ”Detecting Bridging Faults With Stuck-at Test Sets”, Proc. Int. Test Conf., pp. 773–783, Washington, DC, USA, Sept. 12–14, 1988.Google Scholar
  5. [5]
    M. Abramovici, ”A Practical Approach to Fault Simulation and Test Generation for Bridging Fault”, IEEE Trans. Comput., C-34, No. 7, pp. 658–663, July 1985.Google Scholar
  6. [6]
    T. Storey & W. Maly, ”CMOS Bridging Fault Detection”, Proc. Int. Test Conf., pp. 842–851, 1990.Google Scholar
  7. [7]
    J.M. Acken & S.D. Millman, ”Accurate Modelling and Simulation of Bridging Faults”, Proc. Custom Integrated Circuits Conf., pp. 17.4.1–17.4.4, 1991.Google Scholar
  8. [8]
    G.S. Greenstein & J.H. Patel, ”E-PROOFS: A CMOS Bridging Fault Simulator”, Proc. Int. Conf. on CAD, pp. 268–271, 1992.Google Scholar
  9. [9]
    J.M. Acken & S.D. Millman, ”Fault Model Evolution for Diagnosis: Accuracy vs Precision”, Proc. Custom Integrated Circuits Conf., pp. 13.4.1–13.4.4, 1992.Google Scholar
  10. [10]
    J. Rearick & J.H. Patel, ”Fast and Accurate CMOS Bridging Fault Simulation”, Proc. Int. Test Conf., pp. 54–62, 1993.Google Scholar
  11. [11]
    P.C. Maxwell and R.C. Aitken, ”Biased Voting: A Method for Simulating CMOS Bridging Faults in the Presence of Variable Gate logic Threshold”, Proc. Int. Test Conf., pp. 63–72, 1993.Google Scholar
  12. [12]
    M. Renovell, P. Huc, Y. Bertrand ”A Unified Model for Intergate and Intragate CMOS Bridging Fault: The Configuration Ratio”, Proc. Asian Test Symposium, 15–17 Nov., Nara, Japan, pp. 486–495, 1994.Google Scholar
  13. [13]
    M. Renovell, P. Huc, Y. Bertrand ” The configuration ratio: a model for simulating CMOS intra-gate bridge with variable logic thresholds”, First European Dependable Computing Conference, Berlin Germany, pp 165–177, Oct. 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • M. Renovell
    • 1
  • P. Huc
    • 1
  • Y. Bertrand
    • 1
  1. 1.Laboratoire d'Informatique, Robotique et Microélectronique de Montpellier (LIRMM) UMR 9928 CNRSUniversité de Montpellier II: Sciences et Techniques du LanguedocMontpellier Cédex 5France

Personalised recommendations