Advertisement

Topological routing schemes

  • Giorgio Gambosi
  • Paola Vocca
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1151)

Abstract

In this paper, the possibility of using topological and metrical properties to efficiently route messages in a distributed system is evaluated.

In particular, classical interval routing schemes are extended to the case when sets in a suitable topological (or metrical) space are associated to network nodes and incident links, while predicates defined among such sets are referred in the definition of the routing functions.

In the paper we show that such an approach is strictly more powerful than conventional interval and linear interval routing schemes, and present some applications of the technique to some specific classes of graphs.

Keywords

Distributed systems compact routing tables interval routing shortest paths 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Compact Distributed Data Structures for Adaptive Routing. In Proc. 21st ACM Symp. on Theory of Computing, pages 479–489, 1989.Google Scholar
  2. 2.
    B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Improved Routing Strategies with Succinct Tables. Journal of Algorithms, 11:307–341, 1990.CrossRefGoogle Scholar
  3. 3.
    E. M. Bakker, J. van Leeuwen, and R. B. Tan. Linear Interval Routing Schemes. Algorithms Review, 2:45–61, 1991.Google Scholar
  4. 4.
    M. Flammini, G. Gambosi, U. Nanni, and R.B. Tan. Multi-dimensional interval routing schemes. In Proc. 9th International Workshop on Distributed Algorithms (WDAG'95), LNCS. Springer-Verlag, 1995.Google Scholar
  5. 5.
    M. Flammini, G. Gambosi, and S. Salomone. Boolean routing. In Proc. 7th International Workshop on Distributed Algorithms (WDAG'93), volume 725 of LNCS. Springer-Verlag, 1993.Google Scholar
  6. 6.
    M. Flammini, G. Gambosi, and S. Salomone. Interval routing schemes. In Proc. 12th Symp. on Theoretical Aspects of Computer Science (STACS'95), volume 900 of LNCS. Springer-Verlag, 1995.Google Scholar
  7. 7.
    M. Flammini, J. van Leeuwen, and A. Marchetti Spaccamela. The complexity of interval routing on random graphs. In Proc. 20th Symposium on Mathematical Foundation of Computer Science (MFCS'95), 1995.Google Scholar
  8. 8.
    P. Fraigniaud and C. Gavoille. Interval routing schemes. In Proc. 13th Annual ACM Symposium on Principles of Distributed Computing, 1994.Google Scholar
  9. 9.
    G. N. Frederickson and R. Janardan. Designing networks with compact routing tables. Algorithmica, 3:171–190, 1988.MathSciNetGoogle Scholar
  10. 10.
    G. N. Frederickson and R. Janardan. Efficient message routing in planar networks. SIAM Journal on Computing, 18:843–857, 1989.CrossRefGoogle Scholar
  11. 11.
    G. N. Frederickson and R. Janardan. Space efficient message routing in cdecomposable networks. SIAM Journal on Computing, 19:164–181, 1990.CrossRefGoogle Scholar
  12. 12.
    D. Peleg and E. Upfal. A trade-off between space and efficiency for routing tables. Journal of the ACM, 36(3):510–530, 1989.CrossRefGoogle Scholar
  13. 13.
    P. Ružička. On efficiency of interval routing algorithms. In M.P. Chytil, L. Janiga, V. Koubek (Eds.), Mathematical Foundations of Computer Science 1988, volume 324 of LNCS. Springer-Verlag, 1988.Google Scholar
  14. 14.
    N. Santoro and R. Khatib. Labelling and implicit routing in networks. Computer Journal, 28(1):5–8, 1985.CrossRefGoogle Scholar
  15. 15.
    J. van Leeuwen and R. B. Tan. Computer networks with compact routing tables. In G. Rozenberg and A. Salomaa (Eds.) The Book of L, volume 790. Springer-Verlag, 1986.Google Scholar
  16. 16.
    J. van Leeuwen and R. B. Tan. Interval routing. Computer Journal, 30:298–307, 1987.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Giorgio Gambosi
    • 1
  • Paola Vocca
    • 1
  1. 1.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomeItaly

Personalised recommendations