Automatic optimization of dynamic scheduling in logic programs

  • Germán Puebla
  • Manuel Hermenegildo
Posters and Demonstrations
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1140)


  1. 1.
    J. Boye. Avoiding dynamic delays in functional logic programs. In Programming Language Implementation and Logic Programming, number 714 in LNCS, pages 12–27, Estonia, August 1993. Springer-Verlag.Google Scholar
  2. 2.
    M. García de la Banda, K. Marriott, and P. Stuckey. Efficient Analysis of Constraint Logic Programs with Dynamic Scheduling. In 1995 International Logic Programming Symposium, Portland, Oregon, December 1995. MIT Press.Google Scholar
  3. 3.
    María José García de la Banda García. Independence, Global Analysis, and Parallelism in Dynamically Scheduled Constraint Logic Programming. PhD thesis, Universidad Politécnica de Madrid (UPM), July 1994.Google Scholar
  4. 4.
    M. Hanus. Analysis of Nonlinear Constraints in CLP(R). In Tenth International Conference on Logic Programming, pages 83–99. MIT Press, June 1993.Google Scholar
  5. 5.
    M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-Parallelism in Logic Programs: Correctness, Efficiency, and Compile-Time Conditions. Journal of Logic Programming, 22(1):1–45, 1995.Google Scholar
  6. 6.
    M. Hermenegildo, F. Bueno, M. García de la Banda, and G. Puebla. The CIAO Multi-Dialect Compiler and System: An Experimentation Workbench for Future (C)LP Systems. In Proceedings of the ILPS'95 Workshop on Visions for the Future of Logic Programming, Portland, Oregon, USA, December 1995.Google Scholar
  7. 7.
    G. Puebla and M. Hermenegildo. Automatic optimization of dynamic scheduling in logic programs. Technical report, Technical University of Madrid, 1996. Available from Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Germán Puebla
    • 1
  • Manuel Hermenegildo
    • 1
  1. 1.Department of Artificial IntelligenceTechnical University of Madrid (UPM)Spain

Personalised recommendations