Advertisement

Knowledge-based information processing in manufacturing cells — The present and the future

  • Gunther Reinhart
  • Rolf Diesch
  • Michael R. Koch
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1138)

Abstract

Existing concepts for control and malfunction handling in flexible manufacturing systems are mostly centrally structured. Accordingly, the existing knowledge-based systems for diagnosis and quality assurance have a central structure. These approaches don't fulfill future requirements towards increased availability and malfunction tolerance. At the iwb a new hierarchic control concept for autonomous manufacturing cells was developed and implemented. The approach enables an independent handling of occuring malfunctions, relieving the operators from routine interventions. The efficient use of decentral degrees of freedom to react autonomously to occuring malfunctions requires knowledge-based approaches. An analysis of the distributed knowledge bases and the different representations of knowledge shows, that an integrated design of the knowledge-based systems is vital for the successful development of future autonomous manufacturing cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birkel, G.: Aufwandsminierter Wissenserwerb für die Diagnose in flexiblen Produktionszellen (Knowledge acquisition at minimum complexity for diagnosis in flexible production cells). Berlin, publ. Springer, 1995 (iwb Research Reports, 1984).Google Scholar
  2. 2.
    Duffie, N.A., Chitturi, R. and Mou, J.: Fault-tolerant Heterarchichal Control of Heterogeneous Manufacturing System Entities. Journal of Manufacturing Systems 7 (1988) 4, pp. 315–328.Google Scholar
  3. 3.
    Fredrich, H.: Verteiltes Assistenzsystem zur Fehlersuche an Fertigungsanlagen (Distributed assistance system for troubleshooting on manufacturing plant). Munich, publ. Hanser, 1995 (Produktionstechnik, Berlin, 171).Google Scholar
  4. 4.
    Greska, W.: Wissensbasierte Analyse und Klassifizierung von Blechteilen. (Knowledge-based analysis and classification of sheet-metal parts). Munich, publ. Hanser 1995 (Fertigungstechnik, Erlangen, 49).Google Scholar
  5. 5.
    Groha, A.: Universelles Zellenrechnerkonzept für flexible Fertigungssysteme (Universal cell-controller concept for flexible manufacturing systems). Berlin, publ. Springer, 1988 (iwb Research Reports 14).Google Scholar
  6. 6.
    Huber, K.-P. and Nakhaeizadeh, G.: Maschinelle Lernverfahren als Unterstützung beim Wissenserwerb von Diagnose (Machine learning processes as support for knowledge acquisition by expert diagnosis systems). In: Puppe, F. and Günter, A.: Expertensysteme 1993. Berlin, publ. Springer, 1993 (Informatik aktuell).Google Scholar
  7. 7.
    Kahlenberg, R.: Integrierte Qualitätssicherung in flexiblen Fertigungszellen (Integrated quality assurance in flexible manufacturing cells). Berlin, publ. Springer, 1995 (iwb Research Reports 82).Google Scholar
  8. 8.
    Koch, M.R.: Autonome Fertigungszellen — Gestaltung, Steuerung und integrierte Störungsbehandlung (Autonomous manufacturing cells — design, control and integrated treatment of malfunctions). Berlin, publ. Springer, 1996 (iwb Research Reports 98).Google Scholar
  9. 9.
    Koch, M.R.: Von flexiblen zu autonomen Systemen. Höhere Verfügbarkeit durch beherrschte Komplexität bei autonomen Fertigungssystemen (From flexible to autonomous systems. Improved availability through mastery of complexity on autonomous manufacturing systems). TECHNICA 43 (1994) 20, pp. 14–19.Google Scholar
  10. 10.
    Kupec, T.: Wissensbasiertes Leitsystem zur Steuerung flexibler Fertigungssysteme (Knowledge-based control system for flexible manufacturing systems). Berlin, publ. Springer, 1991 (iwb Research Reports 37).Google Scholar
  11. 11.
    Pfeifer, T., Grob, R. and Klonaris, P.: Erfahrungen mit dem wissensbasierten Fehleranalysesystem CAFA (Experience obtained from the CAFA knowledge-based malfunction analysis system). Technisches Messen 62 (1995), pp. 380–384.Google Scholar
  12. 12.
    Reinhart, G. and Löffler, T.: Signalklassifikation im Rahmen der akustischen Fügeprozessüberwachung (Signal classification in the course of acoustic joining-process monitoring). Technisches Messen 62 (1995), pp. 370–374.Google Scholar
  13. 13.
    Reuschenbach, W.: Entwicklung und Einsatz eines universellen Stördatenerfassungssystems mit wissensbasierter Diagnose für Produktionseinrichtungen (Development and introduction of a universal malfunction data recording system with knowledge-based diagnosis for production facilities). Aachen and Mainz, 1992.Google Scholar
  14. 14.
    Schönecker, W.: Integrierte Diagnose in Produktionszellen (Integrated diagnosis in production cells). Berlin, publ. Springer, 1992 (iwb Research Reports 45).Google Scholar
  15. 15.
    Wagner, M.: Fehlertolerante Steuerung maschinennaher Abläufe (Fault-tolerant control of sequences in tool machines). Berlin, publ. Springer, 1995 (iwb Research Reports 100).Google Scholar
  16. 16.
    Weigelt, M. and Mertens, P.: Produktionsplanung und — steuerung mit verteilten wissensbasierten Systemen (Production planning and control with distributed knowledge-based systems). In: Brauer, W. and Hernàndez, D. (Eds.), Verteilte Künstliche Intelligenz und kooperatives Arbeiten. Berlin, publ. Springer, 1991 (Fachberichte Informatik 291)Google Scholar
  17. 17.
    Wiedmann, H.: Objektorientierte Wissensrepräsentation fr die modellbasierte Diagnose an Fertigungseinrichtungen (Object-oriented knowledge presentation for model-based diagnosis on manufacturing plant). Berlin, publ. Springer, 1993 (ISW Forschung und Praxis 84)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Gunther Reinhart
    • 1
  • Rolf Diesch
    • 1
  • Michael R. Koch
    • 1
  1. 1.Institute for Machine Tools and Industrial Management (iwb)Technical University of MunichGermany

Personalised recommendations