Analytical and numerical investigations of evolutionary algorithms in continuous spaces

  • T. Asselmeyer
  • W. Ebeling
  • H. Rosé
Theoretical Foundations of Evolutionary Computation
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1141)


We investigate the biologically motivated selfreproduction strategies by numerical and analytical calculations. In the analytical part we show that each of these strategies can be reduced to an eigenvalue problem of Sturm-Liouville-type. The properties of the landscape and the dynamics of the optimization are encoded in the spectrum of the Hamiltonian, which is different in both cases. We discuss some model cases with exact solutions and compare them with simulations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D. Nulton and P. Salamon. Statistical mechanics of combinatorical optimization. Phys. Rev., A 37:1351, 1988.Google Scholar
  2. 2.
    B. Andresen. Finite-time thermodynamics and simulated annealing. In Proceedings of the Fourth International Conference on Irteversible Processes and Selforganization, Rostock, 1989.Google Scholar
  3. 3.
    P. Sibiani, K.M. Pedersen, K.H. Hoffmann, and P. Salamon. Monte carlo dynamics of optimization: A scaling description. Phys. Rev., A 42:7080, 1990.Google Scholar
  4. 4.
    H.P. Schwefel. Evolution and optimum seeking. Wiley, New York, 1995.Google Scholar
  5. 5.
    I. Rechenberg. Evolutionsstrategien — Optimierung technischer Systeme nach Principien der biologischen Information. Friedrich Frommann Verlag (Günther Holzboog K.G.), Stuttgart-Bad Cannstatt, 1995.Google Scholar
  6. 6.
    R. Feistel and W. Ebeling. Evolution of Complex Systems. Kluwer Academic Publ., Dordrecht, 1989.Google Scholar
  7. 7.
    R.A. Fisher. The Genetical Theory of Natural Selection. Oxford University Press, Oxford, 1930.Google Scholar
  8. 8.
    M. Eigen. The selforganization of matter and the evolution of biological macro-molecules. Naturwiss., 58:465, 1971.CrossRefPubMedGoogle Scholar
  9. 9.
    T. Asselmeyer and W. Ebeling. Unified description of evolutionary strategies over continous parameter spaces. submitted to BioSystems, 1996.Google Scholar
  10. 10.
    L. Schimansky-Geier. Beschreibung evolutionärer Algorithmen durch 2-Teilchenreaktionen. private communication, 1996.Google Scholar
  11. 11.
    N.G. van Kampen. Stochastic processe in physics and chemistry. North-Holland Publishing Company, Amsterdam-New York-Oxford, 1981.Google Scholar
  12. 12.
    R.L. Stratonovich. Topics in the theory of random noise, volume 1. Gordon & Breach, New York, 1963.Google Scholar
  13. 13.
    D.T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chem. reactions. J. Comp. Phys., 22:403–434, 1976.CrossRefGoogle Scholar
  14. 14.
    R. Feistel. Betrachtung der Realsierung stochastischer Prozesse aus automatentheoretischer Sicht. Wiss. Z. W. Pieck Univ. Rostock, 26:663, 1977.Google Scholar
  15. 15.
    D.T. Gillespie. Monte carlo simulation of random walks with residence time dependent transition probability rates. J. of Comp. Phys., 28:435–450, 1978.Google Scholar
  16. 16.
    T. Fricke. Neue Algorithmen zur Simulation von Zufallsprozessen. PhD thesis, University AAchen, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • T. Asselmeyer
    • 1
  • W. Ebeling
    • 1
  • H. Rosé
    • 1
  1. 1.Institut of PhysicsHumboldt University BerlinBerlinGermany

Personalised recommendations