Skip to main content

Production scheduling with genetic algorithms and simulation

  • Applications of Evolutionary Computation Evolutionary Computation in Computer Science and Operations Research
  • Conference paper
  • First Online:
Parallel Problem Solving from Nature — PPSN IV (PPSN 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1141))

Included in the following conference series:

Abstract

A real-world application which develops daily production plans for a large manufacturing company is presented. It is a hybrid system, which combines a genetic algorithm with simulation. Because of the time constraints involved when generating daily schedules, a number of modifications to the standard genetic algorithm were required. A real-valued chromosome representation stored in a hierarchical, dynamic data structure is proposed. Steady-state, rank-based selection, a two-point order crossover and a simple, order-based mutation were implemented. An adaptive feedback controller was introduced to vary the mutation rate as a function of population convergence. Integration of a tabu list minimizes time wasted reevaluating known solutions. A rank-based fitness function is proposed to handle multiple, competing objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nissen, V., Evolutionäre Algorithmen in der Betriebswirtschaft. Tagungs-bericht zum Workshop: ‘Evolutionäre Algorithmen in Management-Anwendungen' (1995).

    Google Scholar 

  2. Davis, L., Job Shop Scheduling with Genetic Algorithms. Proc. of the 1st Intl. Conf. on GA's, J.G. Grefenstette, ed. (1985).

    Google Scholar 

  3. Kanet, J., Sridharan, V. PROGENITOR: A genetic algorithm for production scheduling. Wirtschaftsinformatik, 33. Jahrgang, Heft 4, August (1991).

    Google Scholar 

  4. Bagachi, S., Uckun, S., Miyabe, Y., Kawamura, K., Exploring Problem-Specific Recombination Operators for Job Shop Scheduling. Proc. of the 4th Intl. Conf. on GA's, R. Belew & L. Booker eds. (1991).

    Google Scholar 

  5. Yamada, T., Nakano, R., A Genetic Algorithm Applicable to Large-Scale Job-Shop Problems. PPSN 2, R. Männer and B. Manderick, eds., (1992).

    Google Scholar 

  6. Beasley, J., OR-Library: Distributing test problems by electronic mail. Journal of the Operational Research Society, Vol. 41 (1990).

    Google Scholar 

  7. Michalewicz, Z.,Genetic Algorithms+Data Structures=Evolution Programs (1992, 1994).

    Google Scholar 

  8. Niemeyer, G., AMTOS — Ein universelles Werkzeug zur Modellierung, Simulation, Planung und Steuerung komplexer Prozesse. Entscheidungsunterstützende Systeme im Unternehmen, M. Wolff, ed. (1988).

    Google Scholar 

  9. Gary, M., and Johnson, D., Computers and Intractability — a Guide to the Theory of NP-Completeness (1979).

    Google Scholar 

  10. Whitley, D., The GENITOR Algorithm and Selection Pressure: Why Rank-based Allocation of Reproductive Trials is Best. Proc. of the 3rd Intl. Conf. on GA's, J.D. Schaffer, ed., (1989).

    Google Scholar 

  11. Goldberg, D. and Deb, K., A Comparative Analysis of Selection Schemes Used in Genetic Algorithms. Foundations of Genetic Algorithms, G. Rawlins, ed. (1991).

    Google Scholar 

  12. Davis, L., Applying Adaptive Algorithms to Epistatic Domains. Proc. of the 9th Intl. Joint Conf. on Artificial Intelligence (1985).

    Google Scholar 

  13. Fox, B., McMahon, M., Genetic Operators for Sequencing Problems. Foundations of Genetic Algorithms, G. Rawlins, ed. (1991).

    Google Scholar 

  14. Starkweather, T., et al., A Comparison of Genetic Sequencing Operators. Proc. of the 4th Intl. Conf. on GA's, R. Belew & L. Booker, eds., (1991).

    Google Scholar 

  15. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning (1989).

    Google Scholar 

  16. Tate, D., Smith, A., Expected Allele Coverage and the Role of Mutation in Genetic Algorithms. Proc. of the 5th Intl. Conf. on GA's, S. Forrest ed., (1993).

    Google Scholar 

  17. Fang, H., Ross, P., Corne, D., A promising genetic algorithm approach to job-shop scheduling, rescheduling and open-shop scheduling problems. Proceceedings of the 5th Intl. Conf. on GA's, S. Forrest, ed., (1993).

    Google Scholar 

  18. Niemeyer, G. Kybernetische System-und Modelltheorie (1977).

    Google Scholar 

  19. Glover, F., Tabu Search: A Tutorial. In: Interfaces Vol. July–August, (1990).

    Google Scholar 

  20. Smith, A., Tate, D., Genetic Optimization Using a Penalty Function. In Proceceedings of the 5th Intl. Conf. on GA's, S. Forrest, ed. (1993).

    Google Scholar 

  21. Richardson, J.T., et al., Some Guidelines for Genetic Algorithms with Penalty Functions. Proc. of the 3rd Intl. Conf. on GA's, J. D. Schaffer, ed. (1989).

    Google Scholar 

  22. Dorniger, C., Janscheck, O., Olearczick, E., Röhrenbacher, H., Produktionsplanung — und Steuerung (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hans-Michael Voigt Werner Ebeling Ingo Rechenberg Hans-Paul Schwefel

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Niemeyer, G., Shiroma, P. (1996). Production scheduling with genetic algorithms and simulation. In: Voigt, HM., Ebeling, W., Rechenberg, I., Schwefel, HP. (eds) Parallel Problem Solving from Nature — PPSN IV. PPSN 1996. Lecture Notes in Computer Science, vol 1141. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61723-X_1056

Download citation

  • DOI: https://doi.org/10.1007/3-540-61723-X_1056

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61723-5

  • Online ISBN: 978-3-540-70668-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics