Advertisement

An Evolution Strategy with adaptation of the step sizes by a variance function

  • Joachim Born
Modifications and Extensions of Evolutionary Algorithms Adaptation, Niching, and Isolation in Evolutionary Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1141)

Abstract

In this paper we extend the classical Evolution Strategies by a new mechanism to adjust the step sizes. We propose an Evolution Strategy with Variance Function (ESV). The ESV can generate local and global random search procedures depending on the task.

The idea of the variance function approach is presented. A performance comparison of the ESV with other published Evolutionary Algorithms for global optimization problems is made. We report about some aspects of the analysis of the used multimodal test functions which concern the complexity of the fitness landscape.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Born: Evolutionsstrategien zur numerischen Lösung von Adaptationsaufgaben. PhD thesis, Humboldt Universität zu Berlin, 1978.Google Scholar
  2. 2.
    J. Born: Adaptively Controlled Random Search — a Variance Function Approach. Systems Analysis, Modelling, Simulation, 2, pp.: 109–112, Akademie-Verlag, Berlin, 1985.Google Scholar
  3. 3.
    J. Born und I. Santibáñez-Koref: Untersuchungen und Erweiterungen zu Projection Pursuit Learning Networks. Internal Report, TU Berlin, Bionik und Evolutionstechnik, 1995.Google Scholar
  4. 4.
    H. Mühlenbein, M. Schomisch, and J. Born: The Parallel Genetic Algorithm as Function Optimizer. Parallel Computing 16, pp.: 619–632, 1991.CrossRefGoogle Scholar
  5. 5.
    H. Mühlenbein, and D. Schlierkamp-Vosen: Predictive Models for the Breeder Genetic Algorithm, I. Continuous Parameter Optimization. Evolutionary Computation 1 (1):25–49, 1993.Google Scholar
  6. 6.
    I. Rechenberg: Evolutionsstrategie: Optimierung technischer Systeme nachPrinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart. 1973.Google Scholar
  7. 7.
    I. Rechenberg: Evolutionsstrategie '94. Frommann-Holzboog, Stuttgart.1994.Google Scholar
  8. 8.
    H.P. Schwefel: Numerische Optimierung von Computermodellen mittels der Evolutionsstrategie. Interdisciplinary Systems Research; Birkhäuser, Basel and Stuttgart,vol. 26, 1977.Google Scholar
  9. 9.
    H.-P. Schwefel: Evolution and Optimum Seeking. Wiley. New York. 1994.Google Scholar
  10. 10.
    H.-M. Voigt, J. Born, and J. Treptow: The Evolution Machine — Manual. Institute for Informatics and Computing Techniques (iir), Inform., Inf., Rep. 7(1991) 7-ISSN 0233-2582,1991.Google Scholar
  11. 11.
    H. M. Voigt: Soft Genetic Operators in Evolutionary Algorithms. In: W. Banzhaf and F.H. Eeckmann (Eds.): Evolution and Biocomputation. LN in Computer Science 899, pp. 123–141. Springer, Berlin. 1995.Google Scholar
  12. 12.
    D. Whitley, K. Mathias, S. Rana, and J. Dzubera: Building Better Test Functions. Proc. of the 6th Int'l. Conf. on Genetic Algorithms, pp.: 239–246, Morgan Kaufmann, San Francisco, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Joachim Born
    • 1
  1. 1.Bionik und EvolutionstechnikTechnische Universität BerlinBerlinGermany

Personalised recommendations