Advertisement

Case retrieval nets: Basic ideas and extensions

  • Mario Lenz
  • Hans-Dieter Burkhard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1137)

Abstract

An efficient retrieval of a relatively small number of relevant cases from a huge case base is a crucial subtask of Case-Based Reasoning. In this article, we present Case Retrieval Nets (CRNs), a memory model that has recently been developed for this task. The main idea is to apply a spreading activation process to a net-like case memory in order to retrieve cases being similar to a posed query case. We summarize the basic ideas of CRNs, suggest some useful extensions, and present some initial experimental results which suggest that CRNs can successfully handle case bases larger than considered usually in the CBR community.

Keywords

Case-based Reasoning Case Retrieval Spreading Activation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Auriol, K.-D. Althoff, S. Weß, and S. Dittrich. Integrating induction and casebased reasoning: Methodological approach and first evaluations. In J.-P. Haton, M. Keane, and M. Manago, editors, Advances in Case-Based Reasoning (Proc. EWCBR-94), pages 18–32. Springer, LNAI 984, 1994.Google Scholar
  2. 2.
    E. Auriol, S. Weß, M. Manago, K.-D. Althoff, and R. Traphöner. Inreca: A seamlessly integrated system based on inductive inference and case-based reasoning. In M. M. Veloso and A. Aamodt, editors, Case-Based Reasoning Research and Development (Proc. ICCBR-95), pages 371–380. Springer, LNAI 1010, 1995.Google Scholar
  3. 3.
    M. G. Brown. A Memory Model for Case Retrieval by Activation Passing. PhD thesis, University of Manchester, 1994.Google Scholar
  4. 4.
    H.-D. Burkhard and P. Pirk. Technical diagnosis: Fallexperte-D. Proc. 4th German Workshop on CBR, Berlin, 1996. Humboldt University.Google Scholar
  5. 5.
    K. Goos. Preselection strategies for case based classification. In B. Nebel and L. Dreschler-Fischer, editors, KI-94: Advances in Artificial Intelligence, pages 28–38. Springer, 1994.Google Scholar
  6. 6.
    M. Lenz. Case-based reasoning for holiday planning. In W. Schertler, B. Schmid, A. M. Tjoa, and H. Werthner, editors, Information and Communications Technologies in Tourism, pages 126–132. Springer, 1994.Google Scholar
  7. 7.
    M. Lenz. Case Retrieval Nets applied to large case bases. Proc. 4th German Workshop on CBR, Berlin, 1996. Humboldt University.Google Scholar
  8. 8.
    M. Lenz, E. Auriol, H.-D. Burkhard, M. Manago, and P. Pirk. CBR für Diagnose und Entscheidungsunterstützung. Künstliche Intelligenz, Themenheft Fallbasiertes Schlieβen, 10(1):16–21, 1996.Google Scholar
  9. 9.
    M. Lenz and H.-D. Burkhard. Retrieval ohne Suche? In B. Bartsch-Spörl, D. Janetzko, and S. Weß, editors, Fallbasiertes Schlieβen — Grundlagen und Anwendungen, Proc. XPS-95 Workshop on CBR, pages 1–10, Kaiserslautern, 1995.Google Scholar
  10. 10.
    M. Lenz and H.-D. Burkhard. Case Retrieval Nets: Foundations, properties, implementation, and results. Techn. Report, Humboldt University, Berlin, 1996.Google Scholar
  11. 11.
    M. Lenz and H.-D. Burkhard. Lazy propagation in Case Retrieval Nets. In W. Wahlster, editor, Proc. ECAI-96, pages 127–131, Los Angeles, 1996. John Wiley and Sons.Google Scholar
  12. 12.
    P. M. Murphy and D. W. Aha. UCI Repository of Machine Learning Databases and Domain Theories. University of California, Irvine, CA, 1992.Google Scholar
  13. 13.
    E. L. Rissland, D. B. Skalak, and M. T. Friedman. Case retrieval through multiple indexing and heuristic search. In Proc. IJCAI-93, pages 902–908, 1993.Google Scholar
  14. 14.
    J. W. Schaaf. ”Fish and Sink“: An anytime-algorithm to retrieve adequate cases. In M. M. Veloso and A. Aamodt, editors, Case-Based Reasoning Research and Development (Proc. ICCBR-95), pages 371–380. Springer, LNAI 1010, 1995.Google Scholar
  15. 15.
    R. Sun. Robust reasoning: integrating rule-based and similarity-based reasoning. Artificial Intelligence, 75(2):241–295, 1995.Google Scholar
  16. 16.
    A. Tversky. Features of similarity. Psychological Review, 84:327–352, 1977.Google Scholar
  17. 17.
    S. Weß. Fallbasiertes Problemlösen in wissensbasierten Systemen zur Entscheidungsunterstützung und Diagnostik. PhD thesis, Universität Kaiserslautern, 1995.Google Scholar
  18. 18.
    S. Weß, K.-D. Althoff, and G. Derwand. Using kd-trees to improve the retrieval step in case-based reasoning. In S. Weß, K.-D. Althoff, and M. M. Richter, editors, Topics in Case-Based Reasoning, Proc. EWCBR-93, pages 167–181. Springer, 1994.Google Scholar
  19. 19.
    M. Wolverton. An investigation of marker-passing algorithms for analogue retrieval. In M. M. Veloso and A. Aamodt, editors, Case-Based Reasoning Research and Development (Proc. ICCBR-95), pages 371–380. Springer, LNAI 1010, 1995.Google Scholar
  20. 20.
    M. Wolverton and B. Hayes-Roth. Retrieving semantically distant analogies with knowledge-directed spreading activation. In Proc. AAAI-94, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Mario Lenz
    • 1
  • Hans-Dieter Burkhard
    • 1
  1. 1.Dept. of Computer ScienceHumboldt University BerlinBerlinGermany

Personalised recommendations