DisLoP: A disjunctive logic programming system based on PROTEIN theorem prover

  • Chandrabose Aravindan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1137)


In this paper, we describe a disjunctive logic programming system, referred to as DisLoP, based on PROTEIN theorem prover. PROTEIN supports certain theorem proving calculi, such as restart model elimination and hyper tableaux, that are suitable for working with positive disjunctive logic programs. In particular, restart model elimination calculus is answer complete for postive queries. The DisLoP project started at this point with the aim of extending this further to minimal model reasoning and query processing wrt normal disjunctive logic programming too. The first phase of the project is complete and DisLoP can now perform minimal model reasoning with positive disjunctive logic programs, using both bottom-up and top-down strategies.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aravindan, C: An abductive framework for negation in disjunctive logic programming. Technical Report 9-96, Universität Koblenz-Landau, Koblenz, Germany, 1996. (to appear in proc. of JELIA'96)Google Scholar
  2. 2.
    Baumgartner, P.: Refinements of theory model elimination and a variant without contrapositives. In: A.G. Cohn (ed.), Proc. of ECAI '94, Wiley, 1994.Google Scholar
  3. 3.
    Baumgartner, P., Furbach, U.: PROTEIN: A PROver with a Theory Extension/INterface. In: A. Bundy (ed.), Proc. of CADE-12, LNAI 814, Springer-Verlag, 1994, pp. 769–773.Google Scholar
  4. 4.
    Baumgartner, P., Furbach, U.: Model elimination without contrapositives and its application to PTTP. Journal of automated reasoning, 13:339–359, 1994.Google Scholar
  5. 5.
    Baumgartner, P., Furbach, U., Niemelä, I.: Hyper Tableau. Technical Report 8-96, Universität Koblenz-Landau, Koblenz, Germany, 1996. (to appear in proc. of JELIA'96)Google Scholar
  6. 6.
    Baumgartner, P., Furbach, U., Stolzenburg, F.: Model elimination, Logic programming, and Computing answers. In: Proc. of IJCAI '95, Vol. 1, 1995. (to appear in Artificial Intelligence)Google Scholar
  7. 7.
    Baumgartner, P., Stolzenburg, F.: Constraint model elimination and a PTTP implementation. In: Proc. of the 4th workshop on theorem proving with analytic tableaux and related methods, LNAI 918, Springer-Verlag, 1995, pp. 201–216.Google Scholar
  8. 8.
    Brass, S., Dix, J.: Disjunctive semantics based upon partial and bottom-up evaluation. In: Proc. of the 12th int. conf. on logic programming, MIT Press, 1995, pp. 199–213.Google Scholar
  9. 9.
    Brass, S., Dix, J.: Characterizing D-WFS: Confluence and iterated GCWA. To appear in proc. of JELIA'96.Google Scholar
  10. 10.
    Brass, S., Dix, J., Przymusinski, T.: Characterizations and implementation of static semantics of disjunctive programs. Technical report 4-96, Universität Koblenz-Landau, Koblenz, Germany, 1996.Google Scholar
  11. 11.
    Lobo, J., Minker, J., Rajasekar, A.: Foundations of disjunctive logic programming. MIT Press, 1992.Google Scholar
  12. 12.
    Niemelä, I.: A tableau calculus for minimal model reasoning. In: Proc. of the 5th workshop on theorem proving with analytic tableaux and related methods, LNAI 1071, Springer-Verlag, 1996, pp. 278–294.Google Scholar
  13. 13.
    Niemelä, I.: Implementing circumscription using a tableau calculus. Technical report 6-96, Universität Koblenz-Landau, Koblenz, Germany, 1996. (to appear in proc. of ECAI '96)Google Scholar
  14. 14.
    Przymusinski, T.: Static semantics for normal and disjunctive logic programs. Annals of mathematics and artificial intelligence, Special issue on disjunctive programs, 1995.Google Scholar
  15. 15.
    Smullyan, R. M.: First-Order Logic. Springer-Verlag, 1968.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Chandrabose Aravindan
    • 1
  1. 1.Fachbereich InformatikUniversität Koblenz-LandauKoblenzGermany

Personalised recommendations