Advertisement

A database for number fields

  • Mario Daberkow
  • Andreas Weber
Invited Lecture
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1128)

Abstract

We describe a database for number fields that has been integrated into the algebraic number theory system Kant. The database gives efficient access to the tables of number fields that have been computed during the last years and is easily extended.

A set of functions that are specific for a number field database has been integrated into the user interface Kash of Kant. The user has thus the possibility to create queries which involve special functions on number fields provided by Kant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batut, C., Bernardi, D., Cohen, H., and Olivier, M.User's Guide to PARI-GP — Version 1.39.03. Université Bordeaux I, 33405 Talence Cedex, France, 1995. Available at ftp://megrez.math.u-bordeaux.fr/.Google Scholar
  2. 2.
    Buchmann, J., Ford, D., and Pohst, M. Enumeration of quartic fields of small discriminant. Mathematics of Computation 61 (1993), 873–879.Google Scholar
  3. 3.
    Buchmann, J., and Ford, D. J. On the computation of totally real quartic fields of small discriminant. Mathematics of Computation 52 (1989), 161–174.Google Scholar
  4. 4.
    Bunce, T. Perl 5 database interface (DBI) API specification — version 0.6, 1994. Available at ftp://ftp.mcqueen.com/pub/dbperl/DBI/.Google Scholar
  5. 5.
    Cohen, H.A Course in Computational Algebraic Number Theory, vol. 138 of Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993.Google Scholar
  6. 6.
    Daberkow, M., Jüntgen, M., Jurk, A., Pohst, M. E., and von Schmettow, J. Kant. In Computeralgebra in Deutschland — Bestandsaufnahme, Möglichkeiten, Perspektiven, Fachgruppe Computeralgebra der GI, DMV, GAMM, Ed. Passau, 1993, pp. 212–218.Google Scholar
  7. 7.
    Daberkow, M., Pohst, M., et al. Kant V4. Submitted to Journal of Symbolic Computation.Google Scholar
  8. 8.
    Date, C. J., and Darwen, H. A Guide to The SQL Standard, 3rd ed. Addison-Wesley, 1993.Google Scholar
  9. 9.
    Encarnación, M. J.Fast algorithms for reconstructing rationals, computing polynomial GCDs and factoring polynomials. PhD thesis, RISC Linz, 1995.Google Scholar
  10. 10.
    Fincke, U., and Pohst, M. A procedure for determining algebraic integers of given norm. In Proc. Eurosam 83 (1983), vol. 162 of Lecture Notes in Computer Science, Springer-Verlag, pp. 194–202.Google Scholar
  11. 11.
    Ford, D. Enumeration of totally complex quartic fields of small discriminant. In Proceedings of the Colloquium on Computational Number Theory (Debrecen, Hungary, 1989), A. Pethö, M. E. Pohst, H. C. Williams, and H. G. Zimmer, Eds., de Gruyter, pp. 129–138.Google Scholar
  12. 12.
    Fuqua, D. Z classes for database access, 1995. Available at http://alfred.nih.gov/Dean/ZDB.html.Google Scholar
  13. 13.
    Gruber, M. SQL Instant Reference. Sybex, 1993.Google Scholar
  14. 14.
    Hughes, D. J. Mini SQL — A Lightweigth Database Engine, 1995. Available at ftp://Bond.edu.au/pub/Minerva/msql/.Google Scholar
  15. 15.
    KANT Group. KASH — A User's Guide. Straße des 17. Juni 136, 10623 Berlin, Germany, 1995. Available at ftp://ftp.math.tu-berlin.de/pub/algebra/Kant/.Google Scholar
  16. 16.
    Kernighan, B. W., and Ritchie, D. M.The C Programming Language, second ed. Prentice Hall, Englewood Cliffs, NJ 07632, 1988.Google Scholar
  17. 17.
    Lang, S. Algebraic Number Theory, vol. 110 of Graduate Texts in Mathematics. Springer-Verlag, 1986.Google Scholar
  18. 18.
    Lenstra, A. K. Factoring polynomials over algebraic number fields. In Proceedings of the 1983 European Computer Algebra Conference (1982), vol. 144 of Lecture Notes in Computer Science, Springer-Verlag, pp. 32–39.Google Scholar
  19. 19.
    Lenstra, A. K., Lenstra, H. W., and Lovász, L. Factoring polynomials with rational coefficients. Mathematische Annalen 261 (1982), 515–534.Google Scholar
  20. 20.
    Microsoft Corporation. Accessing the world of information: Open Database Connectivity (ODBC), 1995. Available at http://www.microsoft.com/DEVONLY/STATEGY/ODBC/ODBCBG.HTM.Google Scholar
  21. 21.
    Pohst, M. E., and Zassenhaus, H.Algorithmic Algebraic Number Theory. Cambridge University Press, Cambridge, 1989.Google Scholar
  22. 22.
    Schwarz, A., Pohst, M., and Diaz y Diaz, F. A table of quintic fields. Mathematics of Computation 63 (1994), 361–376.Google Scholar
  23. 23.
    Stroustrup, B.The C++ Programming Language, second ed. Addison-Wesley, Reading, MA, 1991.Google Scholar
  24. 24.
    Yu, A., and Chen, J. The Postgres95 User Manual. Computer Science Division, University of California at Berkeley. Available at http://epoch.cs.berkeley.edu:8000/postgres95/.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Mario Daberkow
    • 1
  • Andreas Weber
    • 2
  1. 1.Fachbereich Mathematik MA 8-1Technische Universität BerlinBerlinGermany
  2. 2.Department of Computer ScienceCornell UniversityIthacaUSA

Personalised recommendations