Advertisement

On minimum-area hulls

Extended abstract
  • Esther M. Arkin
  • Yi-Jen Chiang
  • Martin Held
  • Joseph S. B. Mitchell
  • Vera Sacristan
  • Steven S. Skiena
  • Tae-Cheon Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1136)

Abstract

We study some minimum-area hull problems that generalize the notion of convex hull to star-shaped and monotone hulls. Specifically, we consider the minimum-area star-shaped hull problem: Given an n-vertex simple polygon P, find a minimum-area, star-shaped polygon P* containing P. We also consider the case in which P* is required to be monotone (the minimum-area monotone hull problem).

Keywords

Convex Hull Simple Polygon Restricted Version Original Vertex Consecutive Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Arkin, Y-J. Chiang, M. Held, J. S. B. Mitchell, V. Sacristan, S. S. Skiena, and T-C. Yang. On minimum-area hulls. Manuscript, 1996. Available on http://ams.sunysb.edu/∼jsbm/jsbm.htmlGoogle Scholar
  2. 2.
    E. M. Arkin, S. Khuller, and J. S. B. Mitchell. Geometric knapsack problems. Algorithmica, 10:399–427, 1993.Google Scholar
  3. 3.
    M. J. Atallah. Computing the convex hull of line intersections. J. Algorithms, 7:285–288, 1986.Google Scholar
  4. 4.
    J. S. Chang. Polygon optimization problems. Report 240, Comput. Sci. Div., New York Univ., New York, NY, 1986.Google Scholar
  5. 5.
    J. S. Chang and C. K. Yap. A polynomial solution for the potato-peeling problem. Discrete Comput. Geom., 1:155–182, 1986.Google Scholar
  6. 6.
    B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir, and J. Snoeyink. Ray shooting in polygons using geodesic triangulations. In Proc. 18th JCALP'91, vol. 510, Springer LNCS, pages 661–673.Google Scholar
  7. 7.
    B. Chazelle and L. J. Guibas. Visibility and intersection problems in plane geometry. Discrete Comput. Geom., 4:551–581, 1989.Google Scholar
  8. 8.
    K. Daniels. The restrict/evaluate/subdivide paradigm for translational containment. In Fifth MSI Stony Brook Workshop on Computational Geometry, 1995.Google Scholar
  9. 9.
    K. Daniels and V. Milenkovic. Personal communication, 1995.Google Scholar
  10. 10.
    K. Daniels and V.J. Milenkovic. Multiple translational containment. Part I: An approximation algorithm. Algorithmica, to appear.Google Scholar
  11. 11.
    D. Eppstein, M. Overmars, G. Rote, and G. Woeginger. Finding minimum area k-gons. Discrete Comput. Geom., 7:45–58, 1992.Google Scholar
  12. 12.
    J. Erickson and R. Seidel. Better lower bounds on detecting affine and spherical degeneracies. In Proc. FOCS'1993, pages 528–536.Google Scholar
  13. 13.
    R. Fleischer, K. Mehlhorn, G. Rote, E. Welzl, and C. K. Yap. Simultaneous inner and outer approximation of shapes. Algorithmica, 8:365–389, 1992.Google Scholar
  14. 14.
    A. Gajentaan and M. H. Overmars. On a class of O(n 2) problems in computational geometry. Comput. Geom. Theory Appl., 5:165–185, 1995.Google Scholar
  15. 15.
    L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica, 2:209–233, 1987.CrossRefGoogle Scholar
  16. 16.
    Z. Li. Compaction algorithms for non-convex polygons and their applications. Ph.d. Thesis, Harvard University, Division of Applied Sciences, 1994.Google Scholar
  17. 17.
    Z. Li and V. Milenkovic. A compaction algorithm for non-convex polygons and its application. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 153–162, 1993.Google Scholar
  18. 18.
    V. Milenkovic, K. Daniels, and Z. Li. Automatic marker making. In Proc. 3rd Canad. Conf. Comput. Geom., pages 243–246, 1991.Google Scholar
  19. 19.
    V. Milenkovic, K. Daniels, and Z. Li. Placement and compaction of nonconvex polygons for clothing manufacture. In Proc. 4th Canad. Conf. Comput. Geom., pages 236–243, 1992.Google Scholar
  20. 20.
    D. M. Mount and R. Silverman. Packing and covering the plane with translates of a convex polygon. J. Algorithms, 11:564–580, 1990.Google Scholar
  21. 21.
    F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.Google Scholar
  22. 22.
    G. T. Toussaint and H. ElGindy, A counterexample to an algorithm for computing monotone hulls of simple polygons. Pattern Recogn. Lett., 1:219–222, 1983.Google Scholar
  23. 23.
    G. T. Toussaint. A linear-time algorithm for solving the strong hidden-line problem in a simple polygon. Pattern Recogn. Lett., 4:449–451, 1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Esther M. Arkin
    • 1
  • Yi-Jen Chiang
    • 1
  • Martin Held
    • 2
  • Joseph S. B. Mitchell
    • 1
  • Vera Sacristan
    • 3
  • Steven S. Skiena
    • 4
  • Tae-Cheon Yang
    • 5
  1. 1.Applied Mathematics and StatisticsSUNYStony BrookUSA
  2. 2.Institut für ComputerwissenschaftenUniversität SalzburgSalzburgAustria
  3. 3.Matemàtica Aplicada IIUniversitat Politècnica de CatalunyaBarcelonaSpain
  4. 4.Computer ScienceSUNYStony Brook
  5. 5.Computer ScienceKyungsung UniversityPusanKorea

Personalised recommendations