Advertisement

Efficient broadcasting on faulty star networks

  • Aohan Mei
  • Yoshihide Igarashi
  • Naoki Shimizu
Selected Presentations Fault Tolerance
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1135)

Abstract

We propose a non-adaptive single-port broadcasting scheme for star graphs. Broadcasting in the n-star graph by the scheme can tolerate O(√n log n) faults, and it is completed in O(n log n) time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. B. Akers, D. Harel, and B. Krishnamurthy, “The star graph: An attractive alternative to the n-cube.” In Proc. Int. Conf. Parallel Processing, pp. 393–400, 1987.Google Scholar
  2. 2.
    S. B. Akers and B. Krishnamurthy, “On group graphs and their fault tolerance.” IEEE Trans. Computers, Vol. C-36, pp. 885–888, 1987.Google Scholar
  3. 3.
    S. B. Akers and B. Krishnamurthy, “A group-theoretic model for symmetric interconnection networks.” IEEE Trans. Computers, Vol. 38, pp. 555–566, 1989.Google Scholar
  4. 4.
    N. Bagherzadeh, N. Nassif, and S. Latifi, “A routing and broadcasting scheme on faulty star graphs.” IEEE Trans. Computers, Vol. 42, pp. 1398–1403, 1993.Google Scholar
  5. 5.
    S. Carlsson, Y. Igarashi, K. Kanai, A. Lingas, K. Miura, and O. Petersson, “Information disseminating schemes for fault tolerance in hypercubes.” IEICE Trans. Fundamentals, Vol. E75-A, pp. 255–260, 1992.Google Scholar
  6. 6.
    K. Day and A. Tripathi, “A comparative study of topological properties of hypercubes and star graphs.” IEEE Trans. Parallel and Distributed Systems, Vol. 5, pp. 31–38, 1994.Google Scholar
  7. 7.
    P. Fragopoulou and S. G. Akl, “Optimal communication algorithms on star graphs using spanning tree constructions.” Journal of Parallel and Distributed Computing, Vol. 24, pp. 55–71, 1995.Google Scholar
  8. 8.
    L. Gargano, A. A. Rescigno, and U. Vaccaro, “Optimal communication in faulty star networks.” Manuscript, 1995.Google Scholar
  9. 9.
    S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman, “A survey of gossiping and broadcasting in communication networks.” Networks, Vol. 18, pp. 319–349, 1988.Google Scholar
  10. 10.
    A. Mei, F. Bao, Y. Hamada, and Y. Igarashi, “Optimal time broadcasting in faulty star networks.” In Proc. 10th International Workshop on Distributed Algorithms, 1996, to appear.Google Scholar
  11. 11.
    V. E. Mendia and D. Sarkar, “Optimal broadcasting on the star graph.” IEEE Trans. Parallel and Distributed Systems, Vol. 3, pp. 389–396, 1992.Google Scholar
  12. 12.
    A. Pelc, “Fault-tolerant broadcasting and gossiping in communication networks.” Manuscript, 1995.Google Scholar
  13. 13.
    D. Peleg, “A note on optimal time broadcast in faulty hypercubes.” Journal of Parallel and Distributed Computing, Vol. 26, pp. 132–135, 1995.Google Scholar
  14. 14.
    P. Ramanathan and K. G. Shin, “Reliable broadcast in hypercube multicomputers.” IEEE Trans. Computers, Vol. 37, pp. 1654–1657, 1988.Google Scholar
  15. 15.
    Y. Rouskov and P. K. Srimani, “Fault diameter of star graphs.” Information Processing Letters, Vol. 48, pp. 243–251, 1993.Google Scholar
  16. 16.
    S. Sur and P. K. Srimani, “A fault tolerant routing algorithm in star graph interconnection networks.” In Proc. Int. Conf. Parallel Processing, Vol. III, pp. 267–270, 1991.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Aohan Mei
    • 1
  • Yoshihide Igarashi
    • 1
  • Naoki Shimizu
    • 2
  1. 1.Department of Computer ScienceGunma UniversityKiryuJapan
  2. 2.Oki Data SystemsTakasakiJapan

Personalised recommendations