Extensions for open default theories via the domain closure assumption

  • Michael Kaminski
  • Johann A. Makowsky
  • Michael Tiomkin
Belief Revision and Paraconsistency
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1126)


In this paper we analyze the semantical definition of extensions for open default theories. We argue that this definition reflects the domain closure assumption and show how the domain closure assumption for countable and finite domains can be expressed in first-order default logic extended with the Carnap rule of inference. Also we give examples of the domain dependence of extensions for open default theories. In particular, we show that such extensions do not possess the minimality property.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.C. Chang and H.J. Keisler, Model Theory, North Holland Publishing Co., Amsterdam, 1990.Google Scholar
  2. 2.
    M.A. Dickmann, Large Infinitary Languages, North Holland Publishing Co., Amsterdam, 1975.Google Scholar
  3. 3.
    R. Guerreiro and M. Casanova, An alternative semantics for default logic, preprint, the Third International Workshop on Nonmonotonic Reasoning, South Lake Tahoe, 1990.Google Scholar
  4. 4.
    M. Kaminski, A Comparative Study of Open Default Theories, Artificial Intelligence 77 (1995), 285–319.Google Scholar
  5. 5.
    K. Konolige, Quantification in autoepistemic logic, Fundamenta Informaticae XV (1991), 275–300.Google Scholar
  6. 6.
    V. Lifschitz, On open defaults, in Computational Logic: Symposium Proceedings, J.W. Lloyd Ed., Springer-Verlag, Berlin, 1990, pp. 80–95.Google Scholar
  7. 7.
    J.W. Lloyd, Foundations of Logic Programming, Second Extended Edition, Springer-Verlag, Berlin, 1993.Google Scholar
  8. 8.
    E. Mendelson, Introduction to Mathematical Logic, Wadsworth and Brooks, Monterey, California, 1987.Google Scholar
  9. 9.
    D. Poole, A logical framework for default reasoning, Artificial Intelligence 36 (1988), 27–47.MathSciNetGoogle Scholar
  10. 10.
    R. Reiter, A logic for default reasoning, Artificial Intelligence 13 (1980), 81–132.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Michael Kaminski
    • 1
  • Johann A. Makowsky
    • 1
  • Michael Tiomkin
    • 2
  1. 1.Department of Computer ScienceTechnion - Israel Institute of TechnologyHaifaIsrael
  2. 2.Intel IsraelMTM - Scientific Industries CenterHaifaIsrael

Personalised recommendations