Advertisement

A query answering algorithm for Lukaszewicz' general open default theory

  • Viorica Ciorba
Default Logics
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1126)

Abstract

In this paper, we present a new query answering algorithm for Lukaszewicz' general open default theory. This algorithm, instead of computing all the extensions of the theory, computes only a set of defaults which proves the query. The advantages of our approach in comparison with other existent methods is that it is oriented by the query, it deals with open defaults and it can be easily adapted both for credulous and skeptical reasoning.

The strong point of our algorithm is that we do not perform the initial step of the instanciation of open defaults. The free variables of open defaults will be instanciated during our algorithm by the unification mechanism.

Firstly, we translate a default logic into a new variant of Poole's formalism. In this translation, we associate to every default of the theory, a default's name which is a simple literal parameterized by the free variables of the default. Thus, the defaults can be easily manipulated. In this context, answering a query requires the computation of a sequence of defaults which proves the formula and satisfies some properties (groundness and regularity). Concerning the provability of the query and the groundness property, we propose a modification of Inoue's production algorithm. Concerning the regularity property, we show how Poole's method can be adapted to check it.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Baader F. & Hollunder B., Embedding defaults into terminological knowledge representation formalism, Proceedings of KR 92, p. 306–317, 1992.Google Scholar
  2. [2]
    Besnard Ph., Quiniou R., Quinton P., A theorem prover for a decidable subset of default logic, Proceedings of AAAI, 1983, p. 27–30.Google Scholar
  3. [3]
    Bibel W., Automated Theorem Proving, Vieweg, 1987.Google Scholar
  4. [4]
    Boï J.M., Innocente E., Rauzy A., Siegel P., Production Fields: a new approach to deduction problems and two algorithms for propositional calculus, Revue d'Intelligence Artificielle, vol. 6, nr. 3, 1992, p. 235–253.Google Scholar
  5. [5]
    Brewka G., Cumulative default logics: in defense of non-monotonic inference rules, Artificial Intelligence, vol. 50 (1–2), 1991, p. 183–205.CrossRefGoogle Scholar
  6. [6]
    Chang C. & Lee R., Symbolic logic and mechanical theorem proving, Academic Press, 1973.Google Scholar
  7. [7]
    Ciorba V., Une méthode de preuve pour la logique des défauts de Lukaszewicz, Technical report LRI, 1996, to appear.Google Scholar
  8. [8]
    K. Inoue, Linear resolution for consequence finding, Artificial Intelligence, nr. 56, p. 301–353, 1992.CrossRefGoogle Scholar
  9. [9]
    Junker U. et Konolige K., Computing the extensions of autoepistemic and default logics with a Truth Maintenance System, Proceedings of AAAI, 1990, p. 278–283.Google Scholar
  10. [10]
    Lévy F., Weak extensions for default theories, Proceedings of ECSQARU, 1993, Lecture Notes in Computer Science, nr. 747, p. 233–240.Google Scholar
  11. [11]
    Lukaszewicz W., Considerations on default logic — an alternative approach, Computational Intelligence, vol 4, 1988, p. 1–16.Google Scholar
  12. [12]
    Mengin J., Prioritized conflict resolution for default reasoning, Proceedings of ECAI, 1994, p.376–380.Google Scholar
  13. [13]
    Nicolas P. & Duval B., A theorem prover for Lukaszewicz' Open Default Theory, Proceedings of ECSQARU, 1995, Lecture Notes in Computer Science, nr. 946, p. 311–319.Google Scholar
  14. [14]
    Poole D., Variables in hypotheses, Proceedings of IJCAI, 1987, p. 905–908.Google Scholar
  15. [15]
    Poole D., A logical framework for default reasoning, Artificial Intelligence, vol. 36, 1988, p. 27–46.MathSciNetGoogle Scholar
  16. [16]
    Reiter R., A logic for default reasoning. Artificial Intelligence, vol 13, 1980, p. 81–132.CrossRefGoogle Scholar
  17. [17]
    Risch V., Analytic tableaux for default logics, Journal of Applied Non-Classical Logics, vol. 6, nr. 1., 1996, p. 71–88.Google Scholar
  18. [18]
    Rychlik P., Some variations on default logic, Proceedings of AAAI, 1991, p. 373–378.Google Scholar
  19. [19]
    Schaub T., On constrained default theories, Proceedings of ECAI, 1992, p. 304–308.Google Scholar
  20. [20]
    Schaub T. A new methodology for query-answering in default logics via structure oriented theorem prover, Journal of Automated Reasoning, vol. 15, nr.1, 1995, p. 95–165.CrossRefGoogle Scholar
  21. [21]
    Siegel P., Représentation et utilisation de la connaissance en calcul propositionnel, Thèse de doctorat d'état en informatique, Université d'Aix-Marseille II, juillet 1987.Google Scholar
  22. [22]
    Thielscher M, On prediction in Theorist, Artificial Intelligence, vol. 60, 1993, p. 283–292.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Viorica Ciorba
    • 1
  1. 1.Laboratoire de Recherche en InformatiqueUniversité de Paris SudOrsay CedexFrance

Personalised recommendations