Advertisement

Total exchange in Cayley networks

  • Vassilios V. Dimakopoulos
  • Nikitas J. Dimopoulos
Workshop 02 Routing and Communication in Interconnection Networks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1123)

Abstract

We present a time-optimal solution to the total exchange problem, under the single-port assumption, for any Cayley graph. We exploit symmetries inherent in Cayley graphs to devise what we call node-invariant algorithms which behave uniformly across the network.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akers, S. B., Krishnamurthy, B.: A group-theoretic model for symmetric interconnection networks. IEEE Trans. Comput. 38 (Apr. 1989) 555–566CrossRefGoogle Scholar
  2. 2.
    Annexstein, F., Baumslag, M., Rosenberg, A. L.: Group action graphs and parallel architectures. SIAM J. Comput. 19 (June 1990) 544–569CrossRefGoogle Scholar
  3. 3.
    Bertsekas, D. P., et. al. Optimal communication algorithms for hypercubes. J. Parallel Distrib. Comput. 11 (1991) 263–275CrossRefGoogle Scholar
  4. 4.
    Bertsekas, D. P., Tsitsiklis, J. N.: Parallel and Distributed Computation: Numerical Methods. Englewoods Cliffs, N.J.: Prentice-Hall 1989Google Scholar
  5. 5.
    Biggs, N.: Algebraic Graph Theory (2nd edition). Cambridge, G.B.: Cambridge University Press 1993Google Scholar
  6. 6.
    Boesch, F., Tindell, R.: Circulants and their connectivities. Journal of Graph Theory 8 (1984) 487–499Google Scholar
  7. 7.
    Buckley, F., Harary, F.: Distance in Graphs. Reading, Mass.: Addison — Wesley 1990Google Scholar
  8. 8.
    Carlsson, G. E., Cruthirds, J. E., Sexton, H. B., Wright, C. G.: Interconnection networks based on a generalization of cube-connected cycles. IEEE Trans. Comput. C-34 (Aug. 1985) 769–772Google Scholar
  9. 9.
    Dimakopoulos, V. V., Dimopoulos, N. J.: Optimal total exchange in Cayley graphs. Technical Report ECE-96-1, University of Victoria. (Jan. 1996)Google Scholar
  10. 10.
    Leighton, F. T.: Introduction to Parallel Algorithms and Architectures: Arrays, Trees Hypercubes. San Diego, CA: Morgan Kaufmann 1992Google Scholar
  11. 11.
    Misŝić, J., Jovanović, Z.: Communication aspects of the star graph interconnection network. IEEE Trans. Parall. Distrib. Syst. 5 (July 1994) 678–687CrossRefGoogle Scholar
  12. 12.
    Preparata F. P., Vuillemin, J.: The cube-connected cycles: a versatile network for parallel computation. Commun. ACM 24 (May 1981) 300–309CrossRefGoogle Scholar
  13. 13.
    Saad, Y., Schultz, M. H.: Data communications in hypercubes. J. Parallel Distrib. Comput. 6 (1989) 115–135CrossRefGoogle Scholar
  14. 14.
    Varvarigos, E. A., Bertsekas, D. P.: Communication algorithms for isotropic tasks in hypercubes and wraparound meshes. Parallel Comput. 18 (1992) 1233–1257CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Vassilios V. Dimakopoulos
    • 1
  • Nikitas J. Dimopoulos
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of VictoriaVictoriaCanada

Personalised recommendations