The modal mu-calculus alternation hierarchy is strict

  • J. C. Bradfield
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1119)


One of the open questions about the modal mu-calculus is whether the alternation hierarchy collapses; that is, whether all modal fix-point properties can be expressed with only a few alternations of least and greatest fix-points. In this paper, we resolve this question by showing that the hierarchy does not collapse.


temporal logic mu-calculi hierarchies alternation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [And93]
    H. R. Andersen, Verification of Temporal Properties of Concurrent Systems, DAIMI PB — 445, Computer Science Dept, Aarhus University (1993).Google Scholar
  2. [ArN90]
    A. Arnold and D. Niwinski, Fixed point characterization of Büchi automata on infinite trees. J. Inf. Process. Cybern., EIK 26, 451–459 (1990).Google Scholar
  3. [Bar75]
    J. Barwise, Admissible sets and structures, Springer-Verlag, Berlin/New York (1975).Google Scholar
  4. [Bra91]
    J. C. Bradfield, Verifying Temporal Properties of Systems. Birkhäuser, Boston, Mass. 0-817-63625-0 (1991).Google Scholar
  5. [Bra96]
    J. C. Bradfield, On the expressivity of the modal mu-calculus. Proc. STACS '96, LNCS 1046, 479–490 (1996).Google Scholar
  6. [Bra96a]
    J. C. Bradfield, The modal mu-calculus alternation hierarchy is strict. Online via the Web page or by ftp at Scholar
  7. [EmJ88]
    E. A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. Extended version from FOCS '88. (1988).Google Scholar
  8. [EmL86]
    E. A. Emerson and C.-L. Lei, Efficient model checking in fragments of the propositional mu-calculus. Proc. First IEEE Symp. on Logic in Computer Science 267–278 (1986).Google Scholar
  9. [Kai95]
    R. Kaivola, On modal mu-calculus and Büchi tree automata. Inf. Proc. Letters 54 17–22 (1995).Google Scholar
  10. [Koz83]
    D. Kozen, Results on the propositional mu-calculus. Theoret. Comput. Sci. 27 333–354 (1983).Google Scholar
  11. [Len96]
    G. Lenzi, A hierarchy theorem for the mu-calculus. To appear in Proc. ICALP '96.Google Scholar
  12. [LB+94]
    D. Long, A. Browne, E. Clarke, S. Jha and W. Marrero, An improved algorithm for the evaluation of fixpoint expressions. Proc. CAV '94, LNCS 818 338–350 (1994).Google Scholar
  13. [Lub93]
    R. S. Lubarsky, Μ-definable sets of integers, J. Symbolic Logic 58 291–313 (1993).Google Scholar
  14. [Mos74]
    Y. N. Moschovakis, Elementary induction on abstract structures, North-Holland, Amsterdam (1974).Google Scholar
  15. [Niw86]
    D. Niwiński, On fixed point clones. Proc. 13th ICALP, LNCS 226 464–473 (1986).Google Scholar
  16. [Rab70]
    M. O. Rabin, Weakly definable relations and special automata, in Y. Bar-Hillel (ed.) Mathematical Logic and Foundations of Set Theory, North-Holland, Amsterdam (1970), 1–23.Google Scholar
  17. [RiA74]
    W. Richter and P. Aczel, Inductive definitions and reflecting properties of admissible ordinals, in Fenstad and Hinman (ed.), Generalized recursion theory, North-Holland, Amsterdam 301–381 (1974).Google Scholar
  18. [StE89]
    R. S. Streett and E. A. Emerson, An automata theoretic decision procedure for the propositional mu-calculus. Information and Computation 81 249–264 (1989).Google Scholar
  19. [Sti95]
    C. Stirling, Local model checking games. Proc. Concur '95, LNCS 962, 1–11 (1995).Google Scholar
  20. [Tak86]
    M. Takashashi, The greatest fixed-points and rational omega-tree languages. Theor. Comput. Sci. 44 259–274 (1986).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • J. C. Bradfield
    • 1
  1. 1.Laboratory for Foundations of Computer ScienceUniversity of EdinburghEdinburghUK

Personalised recommendations