Advertisement

A computational technique for determining relative class numbers of CM-fields

  • Stéphane Louboutin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1122)

Abstract

It was well known that it is easy to compute relative class numbers of abelian CM-fields by using generalized Bernoulli numbers (see [9]). Here, we provide a technique for computing the relative class number of any CM-field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Louboutin, S.: Calcul des nombres de classes relatifs: application aux corps octiques quaternioniques à multiplication complexe. Note CRAS Paris 317 (1993) 643–646Google Scholar
  2. 2.
    Louboutin, S.: Calcul des nombres de classes relatifs de certains corps de classes de Hilbert. Note CRAS Paris 319 (1994) 321–25Google Scholar
  3. 3.
    Louboutin, S.: Calcul du nombre de classes des corps de nombres. Pacific J. Math. 171(2) (1996) 455–467Google Scholar
  4. 4.
    Louboutin, S., Okazaki, R.: The class number one problem for some non-abelian normal CM-fields of 2-power degrees. Preprint Univ. Caen (1996) (to be submitted)Google Scholar
  5. 5.
    Louboutin, S., Okazaki, R., Olivier, M.: The class number one problem for some non-abelian normal CM-fields. Trans. Amer. Math. Soc. (to appear)Google Scholar
  6. 6.
    Okazaki, R.: On evaluation of L-functions over real quadratic fields. J. Math. Kyoto Univ. 31 (1991) 1125–1153Google Scholar
  7. 7.
    Okazaki, R.: An elementary proof for a theorem of Thomas and Vasquez. J. Nb. Th. 55 (1995) 197–208.Google Scholar
  8. 8.
    Shintani, T.: On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. Univ. Tokyo 23 (1976) 373–471.Google Scholar
  9. 9.
    Washington, L.C.: Introduction to Cyclotomic Fields. Grad. Texts Math. 83, Springer-Verlag.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Stéphane Louboutin
    • 1
  1. 1.Département de MathématiquesUniversité de CaenCaen CedexFrance

Personalised recommendations