Advertisement

Application of thue equations to computing power integral bases in algebraic number fields

  • István Gaál
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1122)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M.Bergé, J.Martinet and M.Olivier, The computation of sextic fields with a quadratic subfield, Math. Comp., 54(1990), 869–884.Google Scholar
  2. 2.
    I.Gaál, On the resolution of inhomogeneous norm form equations in two dominating variables, Math. Comp., 51(1988), 359–373.Google Scholar
  3. 3.
    I.Gaál, Power integral bases in orders of families of quartic fields, Publ. Math. (Debrecen), 42 (1993), 253–263.Google Scholar
  4. 4.
    I.Gaál, Computing all power integral bases in orders of totally real cyclic sextic number fields, Math. Comp., 65(1996), 801–822.Google Scholar
  5. 5.
    I.Gaál, Computing elements of given index in totally complex cyclic sextic fields, J.Symbolic Computation, to appear.Google Scholar
  6. 6.
    I.Gaál, A.Pethő and M.Pohst, On the resolution of index form equations in biquadratic number fields, I, J.Number Theory, 38 (1991), 18–34.Google Scholar
  7. 7.
    I.Gaál, A.Pethő and M.Pohst, On the resolution of index form equations in biquadratic number fields, II, J.Number Theory, 38 (1991), 35–51.Google Scholar
  8. 8.
    I.Gaál, A.Pethő and M.Pohst, On the resolution of index form equations in biquadratic number fields, III. The bicyclic biquadratic case, J.Number Theory, 53 (1995), 100–114.Google Scholar
  9. 9.
    I.Gaál, A.Pethő and M.Pohst, On the indices of biquadratic number fields having Galois group V 4, Arch. Math., 57 (1991), 357–361.Google Scholar
  10. 10.
    I.Gaál, A.Pethő and M.Pohst, On the resolution of index form equations in quartic number fields, J.Symbolic Computation, 16 (1993), 563–584.Google Scholar
  11. 11.
    I.Gaál, A.Pethő and M.Pohst, Simultaneous representation of integers by a pair of ternary quadratic forms — with an application to index form equations in quartic number fields, J.Number Theory, to appear.Google Scholar
  12. 12.
    I.Gaál, A.Pethő and M.Pohst, On the resolution of index form equations in dihedral number fields, J. Experimental Math., 3(1994), 245–254.Google Scholar
  13. 13.
    I.Gaál and M.Pohst, On the resolution of index form equations in sextic fields with an imaginary quadratic subfield, in preparation.Google Scholar
  14. 14.
    I.Gaál and N.Schulte, Computing all power integral bases of cubic number fields, Math. Comp., 53 (1989), 689–696.Google Scholar
  15. 15.
    D.Koppenhöfer, Über projektive Darstellungen von Algebren kleinen Ranges, Dissertation, Univ. Tübingen, 1994.Google Scholar
  16. 16.
    M.Olivier, Corps sextiques contenant un corps quadratique (I), Séminaire de Théorie des Nombres Bordeaux, 1(1989), 205–250.Google Scholar
  17. 17.
    N.P.Smart, Solving discriminant form equations via unit equations, J.Symbolic Comp., to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • István Gaál
    • 1
  1. 1.Mathematical InstituteKossuth Lajos UniversityHungary

Personalised recommendations