Advertisement

A new algorithm and refined bounds for extended gcd computation

  • David Ford
  • George Havas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1122)

Abstract

Extended gcd computation is interesting itself. It also plays a fundamental role in other calculations. We present a new algorithm for solving the extended gcd problem. This algorithm has a particularly simple description and is practical. It also provides refined bounds on the size of the multipliers obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.A. Blankinship. A new version of the Euclidean algorithm. Amer. Math. Mon., 70:742–745, 1963.Google Scholar
  2. 2.
    G.H. Bradley. Algorithm and bound for the greatest common divisor of n integers. Commun. ACM, 13:433–436, 1970.Google Scholar
  3. 3.
    G. Havas and B.S. Majewski. Integer matrix diagonalization. J. Symbolic Comput., to appear.Google Scholar
  4. 4.
    G. Havas and B.S. Majewski. Hermite normal form computation for integer matrices. Congressus Numerantium, 105:184–193, 1994.Google Scholar
  5. 5.
    G. Havas and B.S. Majewski. A hard problem which is almost always easy. In Algorithms and Computation, Lecture Notes in Computer Science 1004, 216–223, 1995.Google Scholar
  6. 6.
    G. Havas, B.S. Majewski and K.R. Matthews. Extended gcd algorithms. Technical Report TR0302, The University of Queensland, Brisbane, 1994.Google Scholar
  7. 7.
    C.S. Iliopoulos. Worst case complexity bounds on algorithms for computing the canonical structure of finite abelian groups and the Hermite and Smith normal forms of an integer matrix. SIAM J. Computing, 18:658–669, 1989.Google Scholar
  8. 8.
    D.E. Knuth. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms. Addison-Wesley, Reading, Mass., 2nd edition, 1973.Google Scholar
  9. 9.
    B.S. Majewski and G. Havas. The complexity of greatest common divisor computations. In Algorithmic Number Theory, Lecture Notes in Computer Science 877, 184–193, 1994.Google Scholar
  10. 10.
    B.S. Majewski and G. Havas. A solution to the extended gcd problem. In ISSAC'95 (Proc. 1995 Internat. Sympos. Symbolic Algebraic Comput.), ACM Press, New York, 248–253, 1995.Google Scholar
  11. 11.
    B.S. Majewski and G. Havas. Extended gcd calculation. Congressus Numerantium, 111:104–114, 1995.Google Scholar
  12. 12.
    M-H. Mathieu and D. Ford. On p-adic Computation of the Rational Form of a Matrix, J. Symbolic Comput., 10:453–464, 1990.Google Scholar
  13. 13.
    P. Ozello. Calcul Exact des formes de Jordan et de Frobenius d'une Matrice. Doctoral Thesis, University of Grenoble, 1987.Google Scholar
  14. 14.
    M.S. Waterman. Multidimensional greatest common divisor and Lehmer algorithms. BIT, 17:465–478, 1977.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • David Ford
    • 1
    • 2
  • George Havas
    • 1
    • 2
  1. 1.Department of Computer ScienceConcordia UniversityMontréalCanada
  2. 2.Department of Computer ScienceThe University of QueenslandQueenslandAustralia

Personalised recommendations