Advertisement

Minimum discriminants of primitive sextic fields

  • David Ford
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1122)

Abstract

A computation lasting nearly two CPU-years has determined the totally real degree 6 algebraic number field of minimum discriminant with Galois group S5. The S5 sextic fields of minimum discriminant have also been determined for signatures (0,3) and (2, 2). The enumeration of primitive sextic fields of minimum discriminant is now complete for all combinations of Galois group and signature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Ford and M. Pohst, The Totally Real A 5 Extension of Degree 6 with Minimum Discriminant, Experimental Math. 1 (1992), no. 3, 231–235.Google Scholar
  2. 2.
    D. Ford and M. Pohst, The Totally Real A 6 Extension of Degree 6 with Minimum Discriminant, Experimental Math. 2 (1993) no. 3, 231–232.Google Scholar
  3. 3.
    D. Ford, M. Pohst, M. Daberkow and N. Haddad, The S5 Extensions of Degree 6 with Minimum Discriminant (to appear).Google Scholar
  4. 4.
    J. Martinet, Discriminants and Permutation Groups, Number Theory, Proceedings of the First Conference of the Canadian Number Theory Association, Banff, 1988 (R. A. Mollin, ed.), de Gruyter, Berlin and New York, 1990, 359–385.Google Scholar
  5. 5.
    M. Olivier, Corps sextiques primitifs, Annales de l'Institut Fourier 40 (1990), no. 4, 757–767.Google Scholar
  6. 6.
    M. Pohst, On the Computation of Number Fields of Small Discriminants Including the Minimum Discriminant of Sixth Degree Fields, J. Number Theory 14 (1982), 99–117.Google Scholar
  7. 7.
    M. Pohst, P. Weiler and H. Zassenhaus, On Effective Computation of Fundamental Units II, Math. Comp. 38 (1982), no. 157, 293–329.Google Scholar
  8. 8.
    B. L. van der Waerden, Algebra, Volume 1, Ungar, New York, 1970.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • David Ford
    • 1
  1. 1.Centre Interuniversitaire en Calcul Mathématique Algébrique, Department of Computer ScienceConcordia UniversityMontréalCanada

Personalised recommendations