On computing Hilbert class fields of prime degree

  • M. Daberkow
  • M. E. Pohst
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1122)


In the sequel of our recent work on relative extensions of algebraic number fields [DaPo95] we extend the methods presented there for computing Hilbert class fields of degree three over totally real cubic fields. This is the first progress in arithmetic class field computations since Hasse's paper [Ha].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Co]
    H. Cohen, A Course in Computational Algebraic Number Theory, 1. Aufl., Springer Verlag 1993.Google Scholar
  2. [Da]
    M. Daberkow, Computations with relative extensions I, II, to appear.Google Scholar
  3. [DaPo95]
    M. Daberkow and M. Pohst, Computations with relative extensions of number fields with an application to the construction of Hilbert class fields, ISSAC'95 Proc.Google Scholar
  4. [DaPo96]
    M. Daberkow and M. Pohst, On the computation of Hilbert class fields, to appear.Google Scholar
  5. [Ha]
    H. Hasse, Über den Klassenkörper zum quadratischen Zahlkörper mit der Diskriminante-47, Acta Arith. 9, 419–434.Google Scholar
  6. [He]
    E. Hecke, Lectures on the Theory of Algebraic Numbers, Springer Verlag 1981.Google Scholar
  7. [Kash]
    Kant group, KANT V4, submitted to Journal of Symbolic Computations.Google Scholar
  8. [La86]
    S. Lang, Algebraic number theory, Graduate Texts in Mathematics 110, Springer Verlag 1986.Google Scholar
  9. [La90]
    S. Lang, Cyclotomic fields I and II. Combined 2nd ed., Graduate Texts in Mathematics 121, Springer Verlag 1990.Google Scholar
  10. [Ne]
    J. Neukirch, Algebraische Zahlentheorie, 1. Aufl., Springer Verlag 1992.Google Scholar
  11. [Mo]
    P.L. Montgomery, Square roots of products of algebraic numbers, Proceedings of Symposia in Applied Mathematics, Vol. 48 (1994), 567–571.Google Scholar
  12. [Po]
    M. Pohst, Computational algebraic number theory, DMV Seminar Bd. 21, Birkhäuser Verlag 1993.Google Scholar
  13. [PoSchDi]
    M. Pohst, A. Schwarz and F. Diaz y Diaz, A Table of Quintic Fields, Math. Comp. 63 (1994), 361–376.Google Scholar
  14. [PoZa]
    M. Pohst und H. Zassenhaus, Algorithmic algebraic number theory, Cambridge University Press 1989.Google Scholar
  15. [Sha]
    I.R. Shafarevich, A new proof of the Kronecker Weber theorem, Shafarevich, Collected Mathematical Papers, Springer Verlag 1989.Google Scholar
  16. [Sta]
    H.M. Stark, L-functions at s=1. IV. First derivatives as s=0., Adv. Math. 35, 197–235.Google Scholar
  17. [Tra]
    B. M. Trager, Algebraic Factoring and Rational Function Integration, Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation, 219–226.Google Scholar
  18. [Wa]
    L. Washington, Introduction to cyclotomic fields. Graduate Texts in Mathematics 83, Springer Verlag 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • M. Daberkow
    • 1
  • M. E. Pohst
    • 1
  1. 1.Technische Universität BerlinBerlinGermany

Personalised recommendations