Threshold graphs and synchronization protocols

  • Rossella Petreschi
  • Andrea Sterbini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1120)


This paper is a survey on the synchronization of a system of cooperating processes, when the mutual exclusion graph model and the semaphores are used. Threshold graphs and PVchunk semaphores are explained. Matroidal and matrogenic graphs are presented and their synchronization with a constant number of semaphores for each process are pointed out. Threshold dimension of a graph is explained and a sketched proof of its NP-completeness for k≥3 and of the polynomiality for k=2 is provided.

The interest in characterizing new classes of graphs not 2-threshold, but synchronizable with a constant number of semaphores, is shown.


Synchronization primitives PVchunk threshold and matrogenic graphs 2-threshold dimension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eisenberg M. A. and McGuire M. R. Further comments on Dijkstra's concurrent programming control problem. Comm. ACM, 15(11), 1972.Google Scholar
  2. 2.
    V. Chvátal and P. L. Hammer. Aggregation of inequalities in integer programming. Ann. Disc. Math., 1:145–162, 1977.Google Scholar
  3. 3.
    S. De Agostino and R. Petreschi. Parallel recognition algorithms for graphs with restricted neighbourhoods. Int. J. of Foundations of Comp. Sci., 1(2):123–130, 1990.CrossRefGoogle Scholar
  4. 4.
    S. De Agostino and R. Petreschi. On PVchunk operations and matrogenic graphs. Int. J. of Foundations of Comp. Sci., 3(1):11–20, 1992.CrossRefGoogle Scholar
  5. 5.
    E. W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor, Programming Languages. Academic Press, New York, 1968.Google Scholar
  6. 6.
    Burns J. E. Symmetry in systems of asynchronous processes. In Proc. 22nd Annual Symp. on Foundations of Computer Science, pages 164–174, 1981.Google Scholar
  7. 7.
    Knuth D. E. Additional comments on a problem in concurrent programming control. Comm. ACM, 9(5):321–322, 1966.CrossRefGoogle Scholar
  8. 8.
    P. C. Fishburn. Interval Orders and Interval Graphs. Wiley, New York, 1985.Google Scholar
  9. 9.
    P. C. Fishburn. Intransitive indifference with unequal indifference intervals. Journal of Math. Psych., 7:144–149, 70.Google Scholar
  10. 10.
    S. Földes and P. L. Hammer. On a class of matroid-producing graphs. Colloq. Math. Soc. J. Bolyai (Combinatorics), 18:331–352, 1978.Google Scholar
  11. 11.
    De Bruijn J. G. Additional comments on a problem in concurrent programming control. Comm. ACM, 10(3):137–138, 1967.CrossRefGoogle Scholar
  12. 12.
    Le Lann G. Distributed systems, towards a formal approach. In IFIP Congress, pages 155–160, 1977.Google Scholar
  13. 13.
    Ricart G. and Agrawala A. K. An optimal algorithm for mutual exclusion in computer networks. Comm. ACM, 24(1):9–17, 1981. Corrigendum in Comm. ACM, 24 (9).CrossRefGoogle Scholar
  14. 14.
    Ricart G. and Agrawala A. K. Author's response to ‘on mutual exclusion in computer networks’ by carvalho and roucariol. Comm. ACM, 26(2):147–148, 1983.Google Scholar
  15. 15.
    M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of NP-completeness. W. H. Freeman and Co., San Francisco, 1979.Google Scholar
  16. 16.
    P. C. Gilmore and A. J. Hoffman. A characterization of comparability graphs and of interval graphs. Canad. J. Math., 16:539–548, 1964.Google Scholar
  17. 17.
    P. B. Henderson and Y. Zalkstein. A graph-theoretic characterization of the PVchunk class of synchronising primitives. SIAM J. Comput., 6(1):88–108, 1977.CrossRefGoogle Scholar
  18. 18.
    Suzuki I. and Kasami T. An optimality theory for mutual exclusion algorithms in computer networks. In Proc. of the 3rd Int. Conf. On Distributed Computing Systems, pages 365–370, Miami, 1982.Google Scholar
  19. 19.
    T. Ibaraki and U. N. Peled. Sufficient conditions for graphs to have threshold number 2. In P. Hansen, editor, Studies on Graphs and Discrete Programming, pages 241–268. Nort-Holland Publishing Company, Amsterdam, 1981.Google Scholar
  20. 20.
    Lamport L. A new solution of Dijkstra's concurrent programming problem. Comm. ACM, 17(8):453–455, 1974.CrossRefGoogle Scholar
  21. 21.
    Lamport L. Time, clocks and the ordering of events in a distributed system. Comm. ACM, 21(7):558–565, 1978.CrossRefGoogle Scholar
  22. 22.
    Peterson G. L. Myths about the mutual exclusion problem. Inf. Proc. Lett., 12(3):115–116, 1981.CrossRefGoogle Scholar
  23. 23.
    Peterson G. L. A new solution to Lamport's concurrent programming problem using shared variables. ACM Toplas, 5(1):56–65, 1983.CrossRefGoogle Scholar
  24. 24.
    Tze-Heng Ma. On the thresold dimension 2 graphs, manuscript, September 1993.Google Scholar
  25. 25.
    N. V. R. Mahadev and U. N. Peled. Threshold Graphs and Related Topics. Elsevier Publishers, 1995.Google Scholar
  26. 26.
    P. Marchioro, A. Morgana, R. Petreschi, and B. Simeone. Degree sequences of matrogenic graphs. Discrete Math., 51:47–61, 1984.CrossRefGoogle Scholar
  27. 27.
    Carvalho O. and Roucairol G. On mutual exclusion in computer networks. Comm. ACM, 26(2):146–147, 1983.Google Scholar
  28. 28.
    E. T. Ordman. Minimal threshold separators and memory requirements for synchronization. SIAM J. Comput., 18(1):152–165, 1989.CrossRefGoogle Scholar
  29. 29.
    J. Orlin. The minimal integral separator of a threshold graph. Ann. Disc. Math., 1:415–419, 1977.Google Scholar
  30. 30.
    U. N. Peled. Matroidal graphs. Discrete Math., 20:263–286, 1977.Google Scholar
  31. 31.
    Hehner E. C. R. and Shyamasundar R. K. An implementation of P and V. Inf. Proc. Lett., 12(4):196–198, 1981.CrossRefGoogle Scholar
  32. 32.
    Thomas Raschle and Klaus Simon. Recognition of graphs with threshold dimension two. In The 27th Annual ACM Symposium on Theory of Computing, Las Vegas, NE, 1995.Google Scholar
  33. 33.
    Thomas Raschle and Andrea Sterbini. 2-threshold graphs can be recognized in O(n3) time. Private communication.Google Scholar
  34. 34.
    Michel Raynal. Algorithms for mutual exclusion. North Oxford Academic, 1986.Google Scholar
  35. 35.
    Andrea Sterbini. 2-Thresholdness and its Implications: from the Synchronization with PV chunk to the Ibaraki-Peled Cojecture. PhD thesis, University of Rome ”La Sapienza”, 1994.Google Scholar
  36. 36.
    H. Vantilborgh and A. van Lamsweerde. On an extension of Dijkstra's semaphore primitives. Inform. Process. Lett., 1:181–186, 1972.CrossRefGoogle Scholar
  37. 37.
    Dijkstra E. W. Co-operating sequential processes. In F. Genuys, editor, Programming Languages, pages 43–112. Academic Press, New York, 1965.Google Scholar
  38. 38.
    Dijkstra E. W. Self-stabilizing systems in spite of distributed control. Comm. ACM, 17(11):643–644, 1974.CrossRefGoogle Scholar
  39. 39.
    Doran R. W. and Thomas L. K. Variants of the software solution to mutual exclusion. Inf. Proc. Lett., 10(4):206–208, 1980.CrossRefGoogle Scholar
  40. 40.
    Kessels J. L. W. Arbitration without common modifiable variables. Acta Informatica, 17:135–141, 1982.CrossRefGoogle Scholar
  41. 41.
    M. Yannakakis. The complexity of the partial order dimension problem. SIAM J. Algebraic Discrete Methods, 3(3):351–358, 1982.Google Scholar
  42. 42.
    K. Yue and R. T. Jacob. An efficient starvation-free semaphore solution for the graphical mutual exclusion problem. Comput. J., 34(4):345–349, 1991.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Rossella Petreschi
    • 1
  • Andrea Sterbini
    • 1
  1. 1.Department of Computer ScienceUniversity ”La Sapienza”RomeItaly

Personalised recommendations