Worst-case analysis for on-line data compression

  • József Békési
  • Gábor Galambos
  • Ulrich Pferschy
  • Gerhard J. Woeginger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1120)


On-line text-compression algorithms are considered, where compression is done by substituting substrings of the text according to some fixed dictionary (code book). Due to the long running time of optimal compression algorithms, several on-line heuristics have been introduced in the literature. In this paper we continue the investigations of Katajainen and Raita [4]. We complete the worst-case analysis of the longest matching algorithm and of the differential greedy algorithm for several types of special dictionaries and derive matching lower and upper bounds for all variants of the problem in this context.


On-line algorithm data compression worst-case analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Békési, G. Galambos, U. Pferschy, G.J. Woeginger, The fractional greedy algorithm for data compression, Report 292, Institute of Mathematics, Graz, 1994, to appear in Computing.Google Scholar
  2. 2.
    M.E. Gonzalez-Smith and J.A. Storer, Parallel algorithms for data compression, Journal of the ACM 32, 1985, 344–373.CrossRefGoogle Scholar
  3. 3.
    J. Katajainen and T. Raita, An approximation algorithm for space-optimal encoding of a text, The Computer Journal 32, 1989, 228–237.CrossRefGoogle Scholar
  4. 4.
    J. Katajainen and T. Raita, An analysis of the longest matching and the greedy heuristic in text encoding, Journal of the ACM 39, 1992, 281–294.CrossRefGoogle Scholar
  5. 5.
    E.J. Schuegraf and H.S. Heaps, A comparison of algorithms for data base compression by use of fragments as language elements, Inf. Stor. Ret. 10, 1974, 309–319.CrossRefGoogle Scholar
  6. 6.
    J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inf. Theory 23, 1977, 337–343.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • József Békési
    • 1
  • Gábor Galambos
    • 1
  • Ulrich Pferschy
    • 2
  • Gerhard J. Woeginger
    • 3
  1. 1.Department of Computer ScienceJGYTFSzegedHungary
  2. 2.Institut für Statistik und Operations ResearchUniverstät GrazGrazAustria
  3. 3.Institut für Mathematik BTU GrazGrazAustria

Personalised recommendations