Skip to main content

Block codes for dyadic phase shift keying

  • Conference paper
  • First Online:
  • 161 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1120))

Abstract

Codes over finite cyclic groups of order a power of 2 for the hermitian distance are used in PSK modulation. In this paper they are approximated by codes over the dyadic integers. The idea is to interpret the hermitian norm as an eigenvalue of the coset graph attached to the dual code. Since the infinite coset graph of a given dyadic code is a projective limit of the finite coset graphs of the finite projected codes, the spectra of the finite codes converge weakly towards the spectrum of the coset graph of the dyadic code. This entails that the probability of error of a code over a large cyclic ring is well approximated for large alphabet size by a measure attached to its dyadic limit.

On leave of absence from CNRS, I3S, France

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bonnecaze, R. A. Calderbank, P. Solé,“Unimodular constructions of unimodular lattices” IEEE IT 41 (1995) 366–376.

    Google Scholar 

  2. R.A. Calderbank and N.J.A. Sloane, “Modular and p-adic cyclic codes” Des. Codes Crypt.(1995) 21–35.

    Google Scholar 

  3. J.W.S. Cassels, A. Froehlich, Algebraic Number Theory, Academic Press (1967).

    Google Scholar 

  4. F. R. K. Chung, V. Faber, and T. A. Manteuffel, “An upper bound on the diameter of a graph from eigenvalues associated with its laplacian”, SIAM J. Disc. Math., Vol. 7, No. 3, (1994), 443–457.

    Article  Google Scholar 

  5. D. Cvetkovic, M. Doob, H. Sachs, Spectra of graphs, Theory and applications, Pure Applied Math. 9, Academic Press, New York, 1979.

    Google Scholar 

  6. C. Delorme, P. Solé, “Diameter, Covering number, Covering radius and Eigenvalues” Europ. J. of Comb., Vol.12,(1991) 95–108.

    Google Scholar 

  7. C.K. Wong, D.K. Coppersmith, “A combinatorial problem related to multimodule organization”, J. of the ACM 21, 3 (1974) 392–402.

    Article  Google Scholar 

  8. C. Domb, Proc. Camb. Phil. Soc. 50, (1954), 589–591.

    Google Scholar 

  9. A. Fröhlich and M. J. Taylor, Algebraic number theory, Cambridge Studies in advanced mathematics 27, 1991.

    Google Scholar 

  10. R. Godement Adèles et Idèles Cours de l' IHP 1964–65 Paris VII Prépublication.

    Google Scholar 

  11. C.D. Godsil, B. Mohar, “Walk Generating Functions and Spectral Measures of Infinite Graphs” Lin. Alg. and its Appl. 107 (1988) 191–206.

    Article  Google Scholar 

  12. R.Hammons, V. Kumar, R.A. Calderbank, N.J.A. Sloane and P. Solé, “The Z 4-linearity of Kerdock, Preparata, Goethals and related codes”, IEEE IT-40 (1994) 301–319.

    Google Scholar 

  13. H. Hasse, Number Theory, Springer Velag, 1980.

    Google Scholar 

  14. S. Iyanaga, The theory of numbers North Holland (1975).

    Google Scholar 

  15. D. S. Jones, The theory of generalized functions, Cambridge University Press, 2nd edition 1982.

    Google Scholar 

  16. R.P. Kanwal, Generalized Functions: Theory and Technique, Vol. 171 in Mathematics in Science and Engineering, Academic Press 1983.

    Google Scholar 

  17. G. Lachaud, “Une présentation adélique de la série singulière et du problème de Waring”. L'Enseignement Mathématique T. XXVIII-Fasc.1-2 Janvier-Juin (1982) 139–169.

    Google Scholar 

  18. G. Lawler, Intersection of Random Walks, Probability and its applications, Birkhäuser, 1991.

    Google Scholar 

  19. M. Loève, Probability Theory I, Springer GTM 45 (1977).

    Google Scholar 

  20. A. Lubotzsky, R.Phillips, P. Sarnak, “Ramanujan Graphs”, Combinatorica 8 (1988) 261–277.

    Google Scholar 

  21. N.W. McLachlan, Bessel Functions for Engineers, Oxford at the Clarendon Press, 1934.

    Google Scholar 

  22. F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes North-Holland (1977).

    Google Scholar 

  23. B. Mohar, W. Woess, “A survey on spectra of infinite graphs”, Bulletin of the L.M. S. 21 (1989) 209–234.

    Google Scholar 

  24. A. Nilli, “On the second eigenvalue of a graph”, Discr. Math. 91 (1991) 207–210.

    Article  Google Scholar 

  25. A. Papoulis, The Fourier integral and its applications, McGraw-Hill Company, Inc, 1962.

    Google Scholar 

  26. P. Piret, “Codes on the unit circle” IEEE IT-32 (1986) 760–767.

    Google Scholar 

  27. J. Proakis, Digital Communications,McGraw-Hill (1989) second edition.

    Google Scholar 

  28. F. Spitzer, Principles of Random Walk, D. Van Nostrand Company, Inc, 1964.

    Google Scholar 

  29. A. Weil,Basic Number Theory Springer (1973).

    Google Scholar 

  30. G.N. Watson, ‘A Treatise on the Theory of Bessel Functions, 2nd Ed. Cambridge Univ. Press, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michel Deza Reinhardt Euler Ioannis Manoussakis

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Solé, P., Tillich, J.P. (1996). Block codes for dyadic phase shift keying. In: Deza, M., Euler, R., Manoussakis, I. (eds) Combinatorics and Computer Science. CCS 1995. Lecture Notes in Computer Science, vol 1120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61576-8_87

Download citation

  • DOI: https://doi.org/10.1007/3-540-61576-8_87

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61576-7

  • Online ISBN: 978-3-540-70627-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics