Advertisement

Optimum alphabetic binary trees

  • T. C. Hu
  • J. D. Morgenthaler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1120)

Abstract

We describe a modification of the Hu-Tucker algorithm for constructing an optimal alphabetic tree that runs in O(n) time for several classes of inputs. These classes can be described in simple terms and can be detected in linear time. We also give simple conditions and a linear algorithm for determining, in some cases, if two adjacent nodes will be combined in the optimal alphabetic tree.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arne Andersson. A note on searching in a binary search tree. Software-Practice and Experience, 21(10):1125–1128, 1991.Google Scholar
  2. 2.
    A. M. Garsia and M. L. Wachs. A new algorithm for minimum cost binary trees. SIAM Journal on Computing, 6(4):622–642, 1977.CrossRefGoogle Scholar
  3. 3.
    E. N. Gilbert and E. F. Moore. Variable length binary encodings. Bell System Technical Journal, 38:933–968, 1959.Google Scholar
  4. 4.
    T. C. Hu. Combinatorial Algorithms. Addison-Wesley, Reading, MA, 1982.Google Scholar
  5. 5.
    T. C. Hu, D. J. Kleitman, and J. K. Tamaki. Binary trees optimum under various criteria. SIAM Journal on Applied Mathematics, 37(2):246–256, 1979.CrossRefGoogle Scholar
  6. 6.
    T. C. Hu and A. C. Tucker. Optimal computer search trees and variable-length alphabetic codes. SIAM Journal on Applied Mathematics, 21(4):514–532, 1971.CrossRefGoogle Scholar
  7. 7.
    D. A. Huffman. A method for the construction of minimum redundancy codes. Proceedings of the IRE, 40:1098–1101, 1952.Google Scholar
  8. 8.
    M. M. Klawe and B. Mumey. Upper and lower bounds on constructing alphabetic binary trees. In Proceedings of Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 185–193, 1993.Google Scholar
  9. 9.
    D. E. Knuth. Optimum binary search trees. Acta Informatica, 1:14–25, 1971.CrossRefGoogle Scholar
  10. 10.
    D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and Searching. Addison-Wesley, Reading, MA, 1973.Google Scholar
  11. 11.
    L. L. Larmore. A subquadratic algorithm for constructing approximately optimal binary search trees. Journal of Algorithms, 8(4):579–591, 1987.CrossRefGoogle Scholar
  12. 12.
    L. L. Larmore. Height restricted optimal binary trees. SIAM Journal on Computing, 16(6):1115–1123, 1987.CrossRefGoogle Scholar
  13. 13.
    N. Nakatsu. An alphabetic code and its application to information retrieval. Transactions of the Information Processing Society of Japan, 34(2):312–19, 1993.Google Scholar
  14. 14.
    T.M. Przytycka and L.L. Larmore. The optimal alphabetic tree problem revisited. In Proceedings of 21st International Colloquium on Automata, Languages, and Programming, pages 251–262. Springer-Verlag, July 1994.Google Scholar
  15. 15.
    P. Ramanan. Testing the optimality of alphabetic trees. Theoretical Computer Science, 93(2):279–301, 1992.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • T. C. Hu
    • 1
  • J. D. Morgenthaler
    • 1
  1. 1.Department of Computer Science and Engineering, School of EngineeringUniversity of CaliforniaSan DiegoUSA

Personalised recommendations