Advertisement

Ramsey numbers by stochastic algorithms with new heuristics

  • Jihad Jaam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1120)

Abstract

In this paper, we are interested in combinatorial problems of graph and hypergraph colouring linked to Ramsey's theorem. We construct correct colourings for the edges of these graphs and hypergraphs, by stochastic optimization algorithms in which the criterion of minimization is the number of monochrome cliques. To avoid local optima, we propose a technique consisting of an enumeration of edge colourings involved in monochrome cliques, as well as a method of simulated annealing. In this way, we are able to improve some of the bounds for the Ramsey numbers. We also introduce cyclic colourings for the hypergraphs to improve the lower bounds of classical ternary Ramsey numbers and we show that cyclic colourings of graphs, introduced by Kalbfleisch in 1966, are equivalent to symmetric Schur partitions.

Key words

stochastic optimization cyclic colouring Ramsey number Schur number graph hypergraph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abott, H.L.: Some problems in combinatorial analysis. Ph.D. University of Alberta Edmonton (1965)Google Scholar
  2. 2.
    Adorf, H.M., Johnson, M.D.: A discrete stochastic neural network algorithm for constraint satisfaction problems. Proc. of the Int. Joint. Conf. on Neural Networks (1990)Google Scholar
  3. 3.
    Golomb, S.W., Baumert, L.O.: Backtrack Programming. Journal of the ACM, 12 4 (1965) 516–524CrossRefGoogle Scholar
  4. 4.
    Berge, C.: Graphes et Hypergraphes. Dunod, Paris (1970)Google Scholar
  5. 5.
    Chung, F.R.K.: On the Ramsey numbers N(3,3, ..., 3; 2). J. of Disc. Math. 5 (1973) 317–321CrossRefGoogle Scholar
  6. 6.
    Chvátal, V., Harary, F.: Generalized Ramsey theory for Graphs. Proc. of the Amer. Math. Soc. 32 (1972) 389–394Google Scholar
  7. 7.
    Garey, R.M., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Company, New York, (1979).Google Scholar
  8. 8.
    Erdös, P.: Some remarks on the theory of Graphs. Bull. of the Amer. Math. Soc. 53 (1947) 292–294Google Scholar
  9. 9.
    Exoo, G.: A lower bound for Schur numbers and multicolor Ramsey numbers of K 3. Elec. J. of Combin. 1 (1994)Google Scholar
  10. 10.
    Exoo, G.: Applying optimization algorithms to Ramsey problems. J. of Graph Theory (1989) 175–197Google Scholar
  11. 11.
    Exoo, G.: A lower bound for R(5,5). J. of Graph Theory 13 (1989) 97–98Google Scholar
  12. 12.
    Exoo G.: On two classical Ramsey numbers of the form R(3, n). J. of Disc. Math. 4 (1989) 488–490CrossRefGoogle Scholar
  13. 13.
    Exoo, G.: Some constructions related to Ramsey multiplicity. Ars Combin. 26 (1988) 233–242Google Scholar
  14. 14.
    Giraud, G.: Sur le problème de Goodman pour les quadrangles et la majoration des nombres de Ramsey. J. of Combin. Theory B 27 (1979) 237–253CrossRefGoogle Scholar
  15. 15.
    Giraud, G.: Sur les proportions respectives de triangles uni, bi ou tricolores dans un tricoloriage des arêtes du n-emble. J. of Disc. Math. 16 (1976) 13–38CrossRefGoogle Scholar
  16. 16.
    Giraud, G.: Majoration du nombre de Ramsey ternaire-bicolore en (4,4). Note CRAS Paris A 269 (1969) 1173–1175Google Scholar
  17. 17.
    Greenwood, R.E., and Gleason, A.M.: Combinatorial relations and chromatic Graphs. Canad. J. of Math. 7 (1955) 1–7Google Scholar
  18. 18.
    Graham, R., Spencer, J.: La théorie de Ramsey. Pour la Science 155 (1990) 58–63Google Scholar
  19. 19.
    Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory (second edition) John Wiley, New York (1990)Google Scholar
  20. 20.
    Gu, J.: Efficient local search for very large-scale satisfiability problems. Sigart Bull. 3 1 (1992) 8–12Google Scholar
  21. 21.
    Harary, F., Prins, G.: The Ramsey multiplicity of a Graph. Generalized Ramsey Theory for Graphs IV, Networks 4 (1974) 163–173Google Scholar
  22. 22.
    Harary, F.: A survey of generalized Ramsey theory. Graphs and Combinatorics, Springer-Verlag (1974) 10–17Google Scholar
  23. 23.
    Isbell, J.R.: N(4,4;3)≥13. J. of Combin. Theory 6 (1969) 210Google Scholar
  24. 24.
    Jaam, J.: Coloring of Hypergraphs associated with Ramsey numbers by stochastic algorithms. 4th Twente Workshop on Graphs and Combinatorial Optimization, (1995), 153–157Google Scholar
  25. 25.
    Jaam, J.: Coloriage cyclique pour les hypergraphes complets associés aux nombres de Ramsey classiques ternaires. Bull. of Symbolic Logic (extended abstract) 2 (1995) 241–242Google Scholar
  26. 26.
    Jaam J., Fliti T., Hussain D.: New bounds of Ramsey numbers via a top-down algorithm. CP'95-Workshop SSRHP, (1995), 110–118.Google Scholar
  27. 27.
    Jacobson, M.S.: A note on Ramsey multiplicity. J. of Disc. Math. 29 (1980) 201–203CrossRefGoogle Scholar
  28. 28.
    Kalbfleisch, J.G.: Chromatic Graphs and Ramsey theorem. Ph.D. University of Waterloo (1966)Google Scholar
  29. 29.
    Kirkpatrick S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220 (1983) 671–680Google Scholar
  30. 30.
    Manber, U.: Introduction to Algorithms (A Creative Approch). Addison Wesley, USA (1989)Google Scholar
  31. 31.
    Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A.: Equation of state calculations by fast computation machines. J. of Chimical Physics 22 (1953) 1087–1092CrossRefGoogle Scholar
  32. 32.
    McKay, D.B., Radziszowski, S.P.: The Death of Proof. Scientific Amer. (1993)Google Scholar
  33. 33.
    McKay, D.B., Radziszowski, S.P.: A new upper bound for the Ramsey number R(5,5). Aust. J. Combin. 5 (1992) 13–20Google Scholar
  34. 34.
    McKay, D.B, Radziszowski, S.P.: The first classical Ramsey number for Hypergraphs is computed. Proc. of the Second Annual ACM-SIAM Symp. on Discrete Algorithms. (1991) 304–308Google Scholar
  35. 35.
    Minton, S., Johnson, M.D., Philips, A.B., Laird, P.: Solving large-scale constraint satisfaction and scheduling problems using a heuristic repair method. Proc. of the AAAI-90 (1990) 17–24Google Scholar
  36. 36.
    Radziszowski, S.P.: Small Ramsey numbers. Elec. J. of Combin. 1 (1994)Google Scholar
  37. 37.
    Radziszowski, S.P., Kreher, D.L.: Search algorithm for Ramsey Graphs by union of group orbits. J. of Graph Theory 12 (1988) 59–72Google Scholar
  38. 38.
    Ramsey, F.P.: On a problem of formal logic. Proc. of the London Math. Soc. 30 264–286 (1930)Google Scholar
  39. 39.
    Ryser, H.J.: Combinatorial mathematics. Carus Math. Monograph 14 (1963) 38–43Google Scholar
  40. 40.
    Schur, I.: Über die Kongruenz x m +y m=z m mod(p). Jahresber Deutsch Verein 25 (1916) 114–116Google Scholar
  41. 41.
    Selman, B., Kautz, H.A., and N. Cohen, N., Cohen: Noise strategies for improving local search. Proc. of the 12th Nat. Conf. on Artificial Intelligence 1 (1994) 337–343Google Scholar
  42. 42.
    Selman, B., Kautz, H.A.: Domain independent extensions to G-SAT: solving large structured satisfiability problems. Proc. of the IJCAI-93 (1993)Google Scholar
  43. 43.
    Sosic, R., Gu, J.: 3, 000, 000 Queens in less than one minute. Sigart Bull. 2 2 (1991) 22–24Google Scholar
  44. 44.
    Sosic, R., J. Gu, Sosic, J. Sosic: A polynomial time algorithm for the N-Queens problem. Sigart Bull. 1 3 (1990) 7–11Google Scholar
  45. 45.
    Snir, M.: On parallel searching. SIAM J. of Comput. 14 (1985) 688–708CrossRefGoogle Scholar
  46. 46.
    Waltz, D.: Understanding line drawings of scenes with shadows. The Psychology of Computer Vision, Mc-Graw-Hill, New York (1975) 19–91Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jihad Jaam
    • 1
  1. 1.Laboratoire d'Informatique de Marseille-LIMCentre National de la Recherche Scientifique-CNRS URA 1787 Faculté des Sciences de Luminy Case 901Marseille Cedex 9France

Personalised recommendations