Skip to main content

Double description method revisited

  • Conference paper
  • First Online:
Combinatorics and Computer Science (CCS 1995)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1120))


The double description method is a simple and useful algorithm for enumerating all extreme rays of a general polyhedral cone in ℝd, despite the fact that we can hardly state any interesting theorems on its time and space complexities. In this paper, we reinvestigate this method, introduce some new ideas for efficient implementations, and show some empirical results indicating its practicality in solving highly degenerate problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. D. Avis, D. Bremner and R. Seidel. How good are convex hull algorithms. Computational Geometry: Theory and Applications (to appear).

    Google Scholar 

  2. D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom., 8:295–313, 1992.

    Google Scholar 

  3. D. Avis. A C implementation of the reverse search vertex enumeration algorithm. School of Computer Science, McGill University, Montreal, Canada, 1993. programs lrs and qrs available via anonymous ftp from (directory pub/C).

    Google Scholar 

  4. C.B. Barber, D.P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for convex hulls. Technical Report GCC53, The Geometry Center, Minnesota, U.S.A., 1993.

    Google Scholar 

  5. G. Ceder, G.D. Garbulsky, D. Avis, and K. Fukuda. Ground states of a ternary fcc lattice model with nearest and next-nearest neighbor interactions. Physical Review B, 49(1):1–7, 1994.

    Article  Google Scholar 

  6. N.V. Chernikova. An algorithm for finding a general formula for nonnegative solutions of system of linear inequalities. U.S.S.R Computational Mathematics and Mathematical Physics, 5:228–233, 1965.

    Article  Google Scholar 

  7. T. Christof and G. Reinelt. Combinatorial Optimization and Small Polytopes. To appear in TOP 96.

    Google Scholar 

  8. A. Deza, M. Deza and K. Fukuda. On Skeletons, Diameters and Volumes of Metric Polyhedra. Proceedings CCS'95 (this issue).

    Google Scholar 

  9. M. Deza, K. Fukuda, and M. Laurent. The inequicut cone. Discrete Mathematics, 119:21–48, 1993.

    Article  Google Scholar 

  10. M.E. Dyer. The complexity of vertex enumeration methods. Math. Oper. Res., 8:381–402, 1983.

    Google Scholar 

  11. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.

    Google Scholar 

  12. K. Fukuda. cdd.c: C-implementation of the double description method for computing all vertices and extremal rays of a convex polyhedron given by a system of linear inequalities. Department of Mathematics, Swiss Federal Institute of Technology, Lausanne, Switzerland, 1993. program available from (, directory /pub/fukuda/cdd.

    Google Scholar 

  13. B. Grünbaum. Convex Polytopes. John Wiley and Sons, New York, 1967.

    Google Scholar 

  14. T.S. Motzkin, H. Raiffa, GL. Thompson, and R.M. Thrall. The double description method. In H.W. Kuhn and A.W. Tucker, editors, Contributions to theory of games, Vol. 2. Princeton University Press, Princeton. RI, 1953.

    Google Scholar 

  15. P. McMullen and G.C. Shephard. Convex Polytopes and the Upperbound Conjecture. Cambridge University Press, 1971.

    Google Scholar 

  16. K. Mulmuley. Computational Geometry, An Introduction Through Randamized Algorithms. Prentice-Hall, 1994.

    Google Scholar 

  17. A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, New York, 1986.

    Google Scholar 

  18. H. Le Verge. A note on Chernikova's algorithm. Technical report internal publication 635, IRISA, Rennes, France, February 1992.

    Google Scholar 

  19. D. Wilde. A library for doing polyhedral operations. Technical report internal publication 785, IRISA, Rennes, France, December 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Michel Deza Reinhardt Euler Ioannis Manoussakis

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fukuda, K., Prodon, A. (1996). Double description method revisited. In: Deza, M., Euler, R., Manoussakis, I. (eds) Combinatorics and Computer Science. CCS 1995. Lecture Notes in Computer Science, vol 1120. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61576-7

  • Online ISBN: 978-3-540-70627-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics