Connected proper interval graphs and the guard problem in spiral polygons

Extended abstract
  • Chiuyuan Chen
  • Chin-Chen Chang
Graph Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1120)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. A. Bertossi, The edge Hamiltonian path problem is NP-complete, Inform. Process. Lett. 13 (1982) 157–159.CrossRefGoogle Scholar
  2. [2]
    A. A. Bertossi, Finding Hamiltonian circuits in proper interval graphs, Inform. Process. Lett. 17 (1983) 97–101.CrossRefGoogle Scholar
  3. [3]
    G. Ding, Convering the edges with consecutive sets, J. Graph Theory 15 (1991) 559–562.Google Scholar
  4. [4]
    H. Evertt and D. G. Corneil, Recognizing visibility graphs of spiral polygons, J. Algorithms 11 (1990) 1–26.CrossRefGoogle Scholar
  5. [5]
    D. R. Fulkerson and O. A. Gross, Incidence matrices and interval graphs, Pacific J. Math. 15 (1965) 835–855.Google Scholar
  6. [6]
    M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-completeness, Freeman, San Francisco (1979).Google Scholar
  7. [7]
    M. R. Garey, D. S. Johnson, and R. E. Tarjan, The planar Hamiltonian circuit problem is NP-complete, SIAM J. Comput. 5 (1976) 704–714.CrossRefGoogle Scholar
  8. [8]
    F. Gavril, Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph, SIAM J. Comput. 1 (1972) 180–187.CrossRefGoogle Scholar
  9. [9]
    P. C. Gilmore and A. J. Hoffman, A characterization of comparability graphs and of interval graphs, Canad. J. Math. 16 (1964) 539–548.Google Scholar
  10. [10]
    M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York (1980).Google Scholar
  11. [11]
    D. Gouyou-Beauchamps, The Hamiltonian circuit problem is polynomial for 4-connected planar graphs, SIAM J. Comput. 11 (1982) 529–539.CrossRefGoogle Scholar
  12. [12]
    A. Itai, C. H. Papadimitriou, and J. L. Szwarcfiter, Hamiltonian paths in grid graphs, SIAM J. Comput. 11 (1982) 676–686.CrossRefGoogle Scholar
  13. [13]
    R. M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computation (eds. R. E. Miller and J. W. Thatcher) Plenum Press, New York (1972) 85–103.Google Scholar
  14. [14]
    J. M. Keil, Finding Hamiltonian circuits in interval graphs, Inform. Process. Lett. 20 (1985) 201–206.CrossRefGoogle Scholar
  15. [15]
    M. S. Krishnamoorthy, An NP-hard problem in bipartite graphs, SIGACT News 7 (1975) 26.CrossRefGoogle Scholar
  16. [16]
    G. K. Manacher, T. A. Mankus, and C. J. Smith, An optimum Θ(nlogn) algorithm for finding a canonical Hamiltonian path and a canonical Hamiltonian circuit in a set of intervals, Inform. Process. Lett. 35 (1990) 205–211.MathSciNetGoogle Scholar
  17. [17]
    J. O'Rourke, Art Gallery Theorems and Algorithms, Oxford University Press, New York (1987).Google Scholar
  18. [18]
    F. S. Roberts, Representations of Indifference Relations, Ph.D. thesis, Stanford University (1968).Google Scholar
  19. [19]
    F. S. Roberts, Indifference graphs, in: Proof Techniques in Graph Theory (ed. F. Harary) Academic Press, New York (1969) 139–146.Google Scholar
  20. [20]
    W. K. Shih, T. C. Chern, and W. L. Hsu, An O(n 2logn) algorithm for the Hamiltonian cycle problem on circular-arc graphs, SIAM J. Comput. 21 (1992) 1026–1046.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Chiuyuan Chen
    • 1
  • Chin-Chen Chang
    • 1
  1. 1.Institute of Applied MathematicsNational Chiao Tung UniversityHsinchuTaiwan, R.O.C.

Personalised recommendations