Enumeration algorithm for the edge coloring problem on bipartite graphs

  • Yasuko Matsui
  • Tomomi Matsui
Graph Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1120)


In this paper, we propose an algorithm for finding all the edge colorings in bipartite graphs. Our algorithm requires O(T(n, m, Δ)+K min{n2+m,T(n,m,Δ)}) time and O() space, where n denotes the number of vertices, m denotes the number of edges, Δ denotes the number of maximum degree, T(n,m,Δ) denotes the time complexity of an edge coloring algorithm, and K denotes the number of edge colorings.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bondy,J.A., Murty,U.S.R.: Graph theory with applications. North-Holland (1976)Google Scholar
  2. 2.
    Cole,R., Hopcroft,J.: On Edge Coloring Bipartite Graphs. SIAM J.Comput. 11 (1982) 540–546CrossRefGoogle Scholar
  3. 3.
    Dempster,M.A.H.: Two algorithms for the time-table problem, Combinatorial Mathematics and its Applications(ed. D.J.A.Welsh). Academic Press New York (1971) 63–85Google Scholar
  4. 4.
    Fukuda,K., Matsui,T.: Finding All the Minimum Cost perfect Matchings in bipartite Graphs. Networks 22 (1992) 461–468Google Scholar
  5. 5.
    Fukuda,K., Matsui,T.: Finding All the Perfect Matchings in Bipartite Graphs. Appl. Math. Lett. 7 1 (1994) 15–18MathSciNetGoogle Scholar
  6. 6.
    Gabow,H.N.: Using Euler Partitions to Edge Color Bipartite Multigraphs. Information J. Comput. and Information Sciences 5 (1976) 345–355CrossRefGoogle Scholar
  7. 7.
    Gabow,H.N., Kariv,O.: Algorithms for Edge Coloring Bipartite Graphs and Multigraphs. SIAM J. Comput. 11 (1982) 117–129CrossRefGoogle Scholar
  8. 8.
    Gonzalez,T., Sahni,S.: Open Shop Scheduling to Minimize Finish Time. J. ACM. 23 (1976) 665–679CrossRefGoogle Scholar
  9. 9.
    Greenwell,D.L., Kronk,H.V.: Uniquely Line Colorable Graphs. Canad. Math. Bull. 16 (1973) 525–529Google Scholar
  10. 10.
    König,D.: Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlhere. Math. Ann. 77 (1916) 453–465CrossRefGoogle Scholar
  11. 11.
    Tarjan,R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1 (1972) 146–160CrossRefGoogle Scholar
  12. 12.
    Thomason,A.G.: Hamiltonian Cycles and Uniquely Edge Colourable Graphs. Ann. Discrete Math. 3 (1978) 259–268Google Scholar
  13. 13.
    Yoshida,Matsui.Y., Matsui,T.: Finding All the Edge Colorings in Bipartite Graphs. T.IEE. Japan 114-C 4 (1994) 444–449 (in Japanese)Google Scholar
  14. 14.
    de Werra,D.: On some combinatorial problems arising in scheduling. INFOR. 8 (1970) 165–175Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Yasuko Matsui
    • 1
  • Tomomi Matsui
    • 2
  1. 1.Tokyo Metropolitan UniversityTokyoJapan
  2. 2.University of TokyoTokyoJapan

Personalised recommendations