Advertisement

Equitable and m-bounded coloring of split graphs

  • Bor-Liang Chen
  • Ming-Tat Ko
  • Ko-Wei Lih
Graph Theory
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1120)

Abstract

An equitable coloring of a graph is a proper coloring such that the sizes of color classes are as even as possible. An m-bounded coloring of a graph is a proper coloring such that the sizes of color classes are all bounded by a preassigned number m. Formulas for the equitable and m-bounded chromatic numbers of a split graph are established in this paper. It is proved that split graphs satisfy the equitable Δ-coloring conjecture in Chen, Lih and Wu [4].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bollobás, B., Guy, R. K.: Equitable and proportional coloring of trees. J. Comb. Theory(B) 34 (1983) 177–186CrossRefGoogle Scholar
  2. 2.
    Chen, B. L., Lih, K. W.: A note on the m-bounded chromatic number of a tree. Europ. J. Comb. 14 (1993) 311–322CrossRefGoogle Scholar
  3. 3.
    Chen, B. L., Lih, K. W.: Equitable coloring of trees. J. Comb. Theory(B) 61 (1994) 83–87CrossRefGoogle Scholar
  4. 4.
    Chen, B. L., Lih, K. W., Wu, P. L.: Equtiable coloring and the maximum degree. Europ. J. Comb. 15 (1994) 443–447CrossRefGoogle Scholar
  5. 5.
    Hajnal, A., Szemerédi, E.: Proof of a conjecture of Erdös. In Combinatorial Theory and Its Applications. Vol II (P. Erdös, A Rényi and V. T. Sós, eds), Colloq. Math. Soc. János Bolyai 4, North-Holland, Amsterdam (1970) 601–623Google Scholar
  6. 6.
    Lih, K. W., Wu, P. L.: On equitable coloring of bipartite graphs. Discrete Math. (to appear)Google Scholar
  7. 7.
    Meyer, W.: Equitable coloring. Amer. Math. Monthly 80 (1973) 920–922Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Bor-Liang Chen
    • 1
  • Ming-Tat Ko
    • 2
  • Ko-Wei Lih
    • 3
  1. 1.Institute of Applied MathematicsTunghai UniversityTaiwan
  2. 2.Institute of Information ScienceAcademia SinicaNankang, TaipeiTaiwan
  3. 3.Institute of MathematicsAcademia SinicaNankang, TaipeiTaiwan

Personalised recommendations