Logic of predicates with explicit substitutions

  • Marek A. Bednarczyk
Contributed Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1113)


We present a non-commutative linear logic — the logic of predicates with equality and explicit substitutions. Thus, the position of linear logic with respect to the usual logic is given a new explanation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M., Cardelli, L., Curien, P.-L. and J-J. Lévy. Explicit substitutions. ACM Conf. on Principles of Programming Languages, San Francisco, 1990.Google Scholar
  2. 2.
    Avron, A. Simple consequence relations. Information & Computation, Vol 92, No 1, pp. 105–139, May 1991.Google Scholar
  3. 3.
    Basin, D., Matthews, S., L.Vigano. A modular presentation of modal logics in a logical framework. Proc. 1st Isabelle User Workshop, pp. 137–148, Cambridge, 1995.Google Scholar
  4. 4.
    Bednarczyk, M. A. Quasi quantales. GDM Research Report, ICS PAS, 1994.Google Scholar
  5. 5.
    Bednarczyk, M. A. and T. Borzyszkowski Towards program development with Isabelle. Proc. 1st Isabelle User Workshop, pp.101–121, Cambridge, 1995.Google Scholar
  6. 6.
    Bednarczyk, M. A. Logic of predicates versus linear logic. ICS PAS Reports, N∘ 795, December 1995.Google Scholar
  7. 7.
    Brown, C. and D. Gurr. Relations and non-commutative linear logic. To appear in J. of Pure and Applied Algebra Google Scholar
  8. 8.
    Gallier, J. Logic for Computer Science. Foundations of Automatic Theorem Proving. Harper & Row, New York, 1986.Google Scholar
  9. 9.
    Gallier, J. Constructive logics. Part II: linear logic and proof nets. Research Report, CIS, University of Pennsylvania, 1992.Google Scholar
  10. 10.
    Girard, J.-Y. Linear logic. Theoretical Computer Science, 50 (1987), pp 1–102.CrossRefGoogle Scholar
  11. 11.
    Girard, J.-Y. and Y. Lafont. Linear logic and lazy computation. In: Proc. TAP-SOFT'87 (Pisa), vol. 2, LNCS 250, Springer Verlag, 1987, pp 52–66.Google Scholar
  12. 12.
    Girard, J.-Y., Lafont, Y. and P. Taylor. Proofs and Types. volume 7 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 1989.Google Scholar
  13. 13.
    Girard, J.-Y. Linear logic: its syntax and semantics. In Advances of Linear Logic, 1995.Google Scholar
  14. 14.
    Lescane, P. From λσ to λν a journey through calculi of explicit substitutions. ACM Conf. on Principles of Programming Languages, San Portland, 1994.Google Scholar
  15. 15.
    Mendelson, E. Introduction to Mathematical Logic. D. Van Nostrand Company, 1964.Google Scholar
  16. 16.
    Poigné, A. Basic Category Theory. In Handbook of Logic in Computer Science. Vol I. Clarendon Press, Oxford, 1992.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Marek A. Bednarczyk
    • 1
  1. 1.Institute of Computer ScienceP.A.S.Gdańsk

Personalised recommendations