SPASS & FLOTTER version 0.42

  • Christoph Weidenbach
  • Bernd Gaede
  • Georg Rock
Session 2B
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1104)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leo Bachmair and Harald Ganzinger. Rewrite-based equational theorem proving with selection and simplification. Journal of Logic and Computation, 4(3):217–247, 1994.Google Scholar
  2. 2.
    Thierry Boy de la Tour. An optimality result for clause form translation. Journal of Symbolic Computation, 14:283–301, 1992.CrossRefGoogle Scholar
  3. 3.
    Li Dafa. The Formulation of the Halting Problem is Not Suitable for Describing the Halting Problem. Association for Automated Reasoning Newsletter, 27:1–7, October 1994.Google Scholar
  4. 4.
    Peter Graf. Substitution tree indexing. In Rewriting Techniques and Applications, RTA-95, volume 914 of LNCS, pages 117–131. Springer, 1995.Google Scholar
  5. 5.
    William McCune. Otter 2.0. In 10th International Conference on Automated Deduction, CADE-10, volume 449 of LNCS, pages 663–664. Springer, 1990.Google Scholar
  6. 6.
    Hans-Jürgen Ohlbach and Manfred Schmidt-Schauß. The lion and the unicorn. Journal of Automated Reasoning, 1(3):327–332, 1985.Google Scholar
  7. 7.
    Hans-Jürgen Ohlbach and Christoph Weidenbach. A note on assumptions about skolem functions. Journal of Automated Reasoning, 15(2):267–275, 1995.CrossRefGoogle Scholar
  8. 8.
    Francis Jeffry Pelletier. Seventy-five problems for testing automatic theorem provers. Journal of Automated Reasoning, 2(2):191–216, 1986. Errata: Journal of Automated Reasoning, 4(2):235–236,1988.Google Scholar
  9. 9.
    Francis Jeffry Pelletier and Geoff Sutcliffe. An Erratum for Some Errata to Automated Theorem Proving Problems. Association for Automated Reasoning Newsletter, 31:8–14, December 1995.Google Scholar
  10. 10.
    G.E. Peterson. A technique for establishing completeness results in theorem proving with equality. SIAM Journal of Computation, 12(1):82–100, February 1983.CrossRefGoogle Scholar
  11. 11.
    Georg Rock. Transformations of first-order formulae for automated reasoning. Master's thesis, Max-Planck-Institut für Informatik, Germany, April 1995. Supervisors: H.J. Ohlbach, C. Weidenbach.Google Scholar
  12. 12.
    Manfred Schmidt-Schauß and Gerd Smolka. Attributive concept description with complements. Artificial Intelligence, 48:1–26, 1991.CrossRefGoogle Scholar
  13. 13.
    Mark Stickel. Schubert's steamroller problem: Formulations and solutions. Journal of Automated Reasoning, 2(1):89–101, 1986.CrossRefGoogle Scholar
  14. 14.
    Christoph Weidenbach. Extending the resolution method with sorts. In Proc. of 13th International Joint Conference on Artificial Intelligence, IJCAI-93, pages 60–65. Morgan Kaufmann, 1993.Google Scholar
  15. 15.
    Christoph Weidenbach. First-order tableaux with sorts. Journal of the Interest Group in Pure and Applied Logics, IGPL, 3(6):887–906, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Christoph Weidenbach
    • 1
  • Bernd Gaede
    • 1
  • Georg Rock
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations