Experiences in solving constraint relaxation networks with Boltzmann Machines

  • Rolf Weißschnur
  • Joachim Hertzberg
  • Hans Werner Guesgen
Alternative Paradigms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1106)


Earlier, Guesgen and Hertzberg have given a theoretical description of how to implement constraint relaxation in terms of combinatorial optimization using the concept of Boltzmann Machines. This paper sketches some lessons that an implementation of this idea has taught us about how to tailor the translation from constraint networks to Boltzmann Machines such that the resulting implementation be efficient.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. John Wiley & Sons, Cichester, England, 1989.Google Scholar
  2. 2.
    T.L. Dean and M. Boddy. An analysis of time-dependent planning. In Proc. AAAI-88, pages 49–54, St. Paul, Minnesota, 1988.Google Scholar
  3. 3.
    Y. Descotte and J.C. Latombe. Making compromises among antagonist constraints in a planner. Artificial Intelligence, 27:183–217, 1985.Google Scholar
  4. 4.
    D. Dubois, H. Fargier, and H. Prade. Propagation and satisfaction of flexible constraints. Rapport IRIT/92-59-R, IRIT, Toulouse Cedex, France, 1992.Google Scholar
  5. 5.
    B.N. Freeman-Benson, J. Maloney, and A. Borning. An incremental constraint solver. Communications of the ACM, 33:54–63, 1990.CrossRefGoogle Scholar
  6. 6.
    E.C. Freuder. Partial constraint satisfaction. In Proc. IJCAI-89, pages 278–283, Detroit, Michigan, 1989.Google Scholar
  7. 7.
    H.W. Guesgen. A formal framework for weak constraint satisfaction based on fuzzy sets. In Proc. ANZIIS-94, pages 199–203, Brisbane, Australia, 1994.Google Scholar
  8. 8.
    H.W. Guesgen and J. Hertzberg. A Perspective of Constraint-Based Reasoning. Lecture Notes in Artificial Intelligence 597. Springer, Berlin, Germany, 1992.Google Scholar
  9. 9.
    H.W. Guesgen and J. Hertzberg. A constraint-based approach to spatiotemporal reasoning. Applied Intelligence (Special Issue on Applications of Temporal Models), 3:71–90, 1993.Google Scholar
  10. 10.
    J. Hertzberg, H.W. Guesgen, A. Voß, M. Fidelak, and H. Voß. Relaxing constraint networks to resolve inconsistencies. In Proc. GWAI-88, pages 61–65, Eringerfeld, Germany, 1988.Google Scholar
  11. 11.
    A. Philpott. Fuzzy constraint satisfaction. Master's thesis, University of Auckland, Auckland, New Zealand, 1995.Google Scholar
  12. 12.
    J. Prust and W. Vonolfen. Dokumentation PARABOL 1.0. Unpublished documentation document, GMD, 1993.Google Scholar
  13. 13.
    Z. Ruttkay. Fuzzy constraint satisfaction. In Proc. FUZZ-IEEE'94, Orlando, Florida, 1994.Google Scholar
  14. 14.
    R. Weißschnur. Die Projektion von Constraint-Satisfaction-Problemen auf Boltzmann-Maschinen. Master's thesis, Universität Bonn, Institut für Informatik, May 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Rolf Weißschnur
    • 1
  • Joachim Hertzberg
    • 1
  • Hans Werner Guesgen
    • 2
  1. 1.AI Research DivisionGerman National Research Center for Computer Science (GMD)Sankt AugustinGermany
  2. 2.Computer Science DepartmentUniversity of AucklandAucklandNew Zealand

Personalised recommendations