Symbolic model checking using algebraic geometry

  • George S. Avrunin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1102)


In this paper, I show that methods from computational algebraic geometry can be used to carry out symbolic model checking using an encoding of Boolean sets as the common zeros of sets of polynomials. This approach could serve as a useful supplement to symbolic model checking methods based on Ordered Binary Decision Diagrams and may provide important theoretical insights by bringing the powerful mathematical machinery of algebraic geometry to bear on the model checking problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. W. Adams and P. Loustaunau. An Introduction to Gröbner Bases, Volume 3 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1994.Google Scholar
  2. 2.
    D. Bayer and M. Stillman. Macaulay: A System for Computation in Algebraic Geometry and Commutative Algebra. Source and object code available for Unix and Macintosh computers. Contact the authors, or download from math. harvard. edu via anonymous ftp., 1982–1994.Google Scholar
  3. 3.
    D. Bayer and M. Stillman. A criterion for detecting m-regularity. Invent. Math., 87:1–11, 1987.CrossRefGoogle Scholar
  4. 4.
    T. Becker and V. Weispfenning. Gröbner Bases, Volume 141 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1993.Google Scholar
  5. 5.
    R. E. Bryant. On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication. IEEE Trans. Comput., 40(2):205–213, Feb. 1991.MathSciNetGoogle Scholar
  6. 6.
    B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck, 1965.Google Scholar
  7. 7.
    B. Buchberger. Gröbner bases: An algorithmic method in polynomial ideal theory. In N. K. Bose, editor, Multidimensional Systems Theory, pages 184–232. D. Reidel, 1985.Google Scholar
  8. 8.
    J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model checking: 1020 states and beyond. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, pages 428–439, 1990.Google Scholar
  9. 9.
    D. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1992.Google Scholar
  10. 10.
    P. Gritzmann and B. Sturmfels. Minkowski addition of polytopes: Computational complexity and applications to Gröbner bases. SIAM Journal on Discrete Mathematics, 6(2): 246–269, 1993.CrossRefGoogle Scholar
  11. 11.
    R. Hartshorne. Algebraic Geometry, Volume 52 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1977.Google Scholar
  12. 12.
    E. Mayr and A. Meyer. The complexity of the word problem for commutative semigroups and polynomial ideals. Adv. in Math., 1982.Google Scholar
  13. 13.
    K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • George S. Avrunin
    • 1
  1. 1.Department of MathematicsUniversity of MassachusettsAmherst

Personalised recommendations