Advertisement

On the termination problem for one-rule semi-Thue system

  • Géraud Sénizergues
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1103)

Abstract

We solve the u-termination and the termination problems for the one-rule semi-Thue systems S of the form 0p1qv, (p,q ∈ ℕ — {0},v ∈ {0,1}*). We obtain a structure theorem about a monoid that we call the termination-monoid of 5. As a consequence, for every fixed system S of the above form, the termination-problem has a linear time-complexity.

Keywords

semi-Thue systems termination finite automata rational monoid automatic structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ber79]
    J. Berstel. Transductions and Context-Free Languages. Teubner, 1979.Google Scholar
  2. [BO93]
    R.V. Book and F. Otto. String Rewriting Systems. Texts and monographs in Computer Science. Springer-Verlag, 1993.Google Scholar
  3. [Der87]
    N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation no 3, pages 69–116, 1987.Google Scholar
  4. [DH93]
    N. Dershowitz and C. Hoot. Topics in termination. In Proceedings of the 5th RTA, edited by C. Kirchner, pages 198–212. Springer, LNCS 690, 1993.Google Scholar
  5. [DJ91]
    N. Dershowitz and J.P. Jouannaud. Rewrite Systems. In Handbook of theoretical computer science, svol.B, Chapter 2, pages 243–320. Elsevier, 1991.Google Scholar
  6. [ECH92]
    D.B.A. Epstein, J.W. Cannon, D.F. Holt, S.V.F. Levy, M.S. Paterson, and W.P. Thurston. Word processing in groups. Jones and Bartlett, 1992.Google Scholar
  7. [Ges91]
    A. Geser. Relative termination. Report 91-03, Ulmer Informatik-Berichte, Universität Ulm, 1991.Google Scholar
  8. [Kur90]
    W. Kurth. Termination und konfluenz von semi-Thue-systemen mit nur einer regel. Dissertation, Technische Universität Clausthal, 1990.Google Scholar
  9. [McN94]
    R. McNaughton. The uniform halting problem for one-rule semi-Thue systems. Report 94-18 of Rensselaer Polytechnic Institute, 1994.Google Scholar
  10. [MS96]
    Y. Matiyasevich and G. Sénizergues. Decision problems for semi-Thue systems with a few rules. To appear in the proceedings of LICS 96, 1996.Google Scholar
  11. [PS90]
    M. Pelletier and J. Sakarovitch. Easy multiplications, II. extensions of rational semigroups. Information and Computation, pages 18–59, 1990.Google Scholar
  12. [Sak87]
    J. Sakarovitch. Easy multiplications, I. the realm of kleene's theorem. Information and Computation, pages 173–197, 1987.Google Scholar
  13. [Sén96]
    G. Sénizergues. The termination and uniform termination problems for one rule of the form 0p1qv. In preparation, preliminary version available by email on request to: ges@labri.u-bordeaux.fr, 1996.Google Scholar
  14. [ZG95]
    H. Zantema and A. Geser. A complete characterisation of termination of 0p1q→ 1r0s. In Proceedings RTA95, LNCS 914, pages 41–55. Springer-Verlag, 1995.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Géraud Sénizergues
    • 1
  1. 1.LaBRI and UFR Math-infoUniversité Bordeaux1Talence Cedex

Personalised recommendations