Symideal Gröbner bases

  • Manfred Göbel
Regular Papers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1103)


This paper presents a completion technique for a set of polynomials in K[X1,..., Xn] which is closed under addition and under multiplication with symmetric polynomials as well as a solution for the corresponding membership problem. Our algorithmic approach is based on a generalization of a novel rewriting technique for the computation of bases for rings of permutation-invariant polynomials.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Becker, T., Weispfenning, V., in Cooperation with Kredel, H. (1993). Gröbner Bases: A Computational Approach to Commutative Algebra. Springer, New YorkGoogle Scholar
  2. 2.
    Buchberger, B. (1985). Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory. In: Bose, N. K. (ed.), Multidimensional Systems Theory. Reidel, Dordrecht, 184–232Google Scholar
  3. 3.
    Göbel, M. (1995). Computing Bases for Permutation-Invariant Polynomials. Journal of Symbolic Computation 19, 285–291CrossRefGoogle Scholar
  4. 4.
    Göbel, M. (1996). Computing Bases for Permutation-Invariant Polynomials. Dissertation, Universität Tübingen. Shaker, AachenGoogle Scholar
  5. 5.
    Knuth, D. E., Bendix, P. B. (1970). Simple Word Problems in Universal Algebras. In: Leech, J. (ed.), Computational Problems in Abstract Algebra. Pergamon Press, 263–297Google Scholar
  6. 6.
    Kredel, H. (1990). MAS: Modula-2 Algebra System. In: Gerdt, V. P., Rostovtsev, V. A., and Shirkov, D. V. (eds.), IV International Conference on Computer Algebra in Physical Research. World Scientific Publishing Co., Singapore, 31–34Google Scholar
  7. 7.
    Loos, R. (1981). Term Reduction Systems and Algebraic Algorithms. In: Siekmann, J. H. (ed.), GWAI-81, German Workshop on Artificial Intelligence, Bad Honnef. Informatik-Fachberichte, Herausgegeben von W. Brauer im Auftrag der Gesellschaft für Informatik (GI), 47. Springer, Berlin, 214–234Google Scholar
  8. 8.
    Sturmfels, B. (1993). Algorithms in Invariant Theory. Springer, ViennaGoogle Scholar
  9. 9.
    Weispfenning, V. (1987). Admissible Orders and Linear Forms. ACM SIGSAM Bulletin 21/2, 16–18Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Manfred Göbel
    • 1
  1. 1.Wilhelm-Schickard-Institut für InformatikTübingenGermany

Personalised recommendations