Advertisement

Deciding finiteness of Petri nets up to bisimulation

  • Petr Jančar
  • Javier Esparza
Session 12: Process Theory II
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1099)

Abstract

We study the following problems for strong and weak bisimulation equivalence: given a labelled Petri net and a finite transition system, are they equivalent?; given a labelled Petri net, is it equivalent to some (unspecified) finite transition system? We show that both problems are decidable for strong bisimulation and undecidable for weak bisimulation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation Equivalence is Decidable for all Basic Parallel Processes. In Proceedings of CONCUR '93, LNCS 715, 143–157, 1993.Google Scholar
  2. 2.
    S. Christensen, H. Hüttel, and C. Stirling. Bisimulation Equivalence is Decidable for all Context-free Processes. In Proceedings of CONCUR '92, LNCS 630, 138–147, 1992.Google Scholar
  3. 3.
    J. Esparza and M. Nielsen. Decidability Issues for Petri Nets — a Survey. Bulletin of the EATCS, 52:245–262, 1994, and Journal of Information Processing and Cybernetics 30(3):143–160, 1995.Google Scholar
  4. 4.
    Y. Hirshfeld. Petri Nets and the Equivalence Problem. In Proceedings of CSL '93, LNCS 832, 165–174, 1994.Google Scholar
  5. 5.
    P. Jančar. Decidability of a Temporal Logic Problem for Petri Nets. Theoretical Computer Science, 74:71–93, 1990.CrossRefGoogle Scholar
  6. 6.
    P. Jančar. All Action-based Behavioural Equivalences are Undecidable for Labelled Petri Nets. Bulleting of the EATCS, 56:86–88, 1995.Google Scholar
  7. 7.
    P. Jančar. Decidability Questions for Equivalences in Petri Nets. Technical report, University of Ostrava, habilitation thesis, 1995.Google Scholar
  8. 8.
    P. Jancar. Undecidability of Bisimilarity for Petri Nets and Some Related Problems. Theoretical Computer Science, 148:281–301, 1995.CrossRefGoogle Scholar
  9. 9.
    P. Jančar and F. Moller. Checking Regular Properties of Petri Nets. In Proceedings of CONCUR '95, LNCS 962, 348–362, 1995.Google Scholar
  10. 10.
    S. Mauw and H. Mulder. Regularity of BPA-systems is Decidable. In Proceedings of CONCUR '94, LNCS 836, 34–47, 1994.Google Scholar
  11. 11.
    R. Valk and G. Vidal-Naquet. Petri Nets and Regular Languages. Journal of Computer and system Sciences, 23(3):299–325, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Petr Jančar
    • 1
  • Javier Esparza
    • 2
  1. 1.Dept. of Computer ScienceUniversity of OstravaOstravaCzech Republic
  2. 2.Institut für InformatikTechnische Universität MünchenMünchenGermany

Personalised recommendations