Advertisement

Improved sampling with applications to dynamic graph algorithms

  • Monika Rauch Henzinger
  • Mikkel Thorup
Session 6: Graph Algorithms
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1099)

Abstract

We state a new sampling lemma and use it to improve the running time of dynamic graph algorithms.

For the dynamic connectivity problem the previously best randomized algorithm takes expected time O(log3n) per update, amortized over Ω(m) updates. Using the new sampling lemma, we improve its running time to O(log2n). There exists a lower bound in the cell probe model for the time per operation of Ω(log n/ log log n) for this problem.

Similarly improved running times are achieved for 2-edge connectivity, k-weight minimum spanning tree, and bipartiteness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Alon, J. Spencer, P. Erdös. The Probabilistic Method. Wiley-Interscience Series, Johan Wiley and Sons, Inc., 1992.Google Scholar
  2. 2.
    D. Angluin, L. G. Valiant. Fast probabilistic algorithms for Hamiltonian circuits and matchings. J. Comput. System Sci. 18 (2), 1979, 155–193.CrossRefGoogle Scholar
  3. 3.
    D. Eppstein, Z. Galil, G. F. Italiano. Improved Sparsification. Tech. Report 93-20, Department of Information and Computer Science, University of California, Irvine, CA 92717.Google Scholar
  4. 4.
    D. Eppstein, Z. Galil, G. F. Italiano, A. Nissenzweig. Sparsification — A Technique for Speeding up Dynamic Graph Algorithms. Proc. 33rd Symp. on Foundations of Computer Science, 1992, 60–69.Google Scholar
  5. 5.
    M. L. Fredman and M. R. Henzinger. Lower Bounds for Fully Dynamic Connectivity Problems in Graphs. Submitted to Algorithmica.Google Scholar
  6. 6.
    M. R. Henzinger and V. King. Randomized Dynamic Graph Algorithms with Polylogarithmic Time per Operation. Proc. 27th ACM Symp. on Theory of Computing, 1995, 519–527.Google Scholar
  7. 7.
    K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. EATCS Monographs on Theoretical Computer Science, Springer-Verlag, 1984.Google Scholar
  8. 8.
    P. B. Miltersen, S. Subramanian, J. S. Vitter, and R. Tamassia. Complexity models for incremental computation. Theoretical Computer Science, 130, 1994, 203–236.CrossRefGoogle Scholar
  9. 9.
    J. P. Schmidt, A. Siegel, A. Srinivasan. Chernoff-Hoeffding Bounds for Limited Independence. SIAM J. on Discrete Mathematics 8 (2), 1995, 223–250.Google Scholar
  10. 10.
    R. E. Tarjan and U. Vishkin. Finding biconnected components and computing tree functions in logarithmic paralleltime. SIAM J. Computing, 14(4): 862–874, 1985.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Monika Rauch Henzinger
    • 1
  • Mikkel Thorup
    • 2
  1. 1.Digital System Research CenterPalo Alto
  2. 2.Department of Computer ScienceUniversity of CopenhagenKbh. ØDenmark

Personalised recommendations