Skip to main content

Progress in selection

Part of the Lecture Notes in Computer Science book series (LNCS,volume 1097)

Abstract

There has been recent progress in the selection problem, and in median-finding in particular, after a lull of ten years. This paper reviews some ancient and modern results on this problem, and suggests possibilities for future research.

Keywords

  • Partial Order
  • Selection Problem
  • Linear Extension
  • Large Element
  • Hasse Diagram

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This research was supported in part by the EU under contract 20244 (ALCOM-IT).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-61422-2_146
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-68529-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. W. Bent and J. W. John. Finding the median requires 2n comparisons. In Proc. 17th ACM Symp. on Theory of Computing, 1985, 213–216.

    Google Scholar 

  2. M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7, 1973, 448–461.

    Google Scholar 

  3. J. W. Daykin. Inequalities for the number of monotonie functions of partial orders. Discrete Mathematics, 61, 1986, 41–55.

    Google Scholar 

  4. D. E. Daykin, J. W. Daykin, and M. S. Paterson. On log concavity for order-preserving maps of partial orders. Discrete Mathematics, 50, 1984, 221–226.

    Google Scholar 

  5. D. Dor. Selection Algorithms. PhD thesis, Tel-Aviv University, 1995.

    Google Scholar 

  6. D. Dor and U. Zwick. Selecting the median. In Proc. 6th Annual ACM-SIAM Symp. on Discrete Algorithms, 1995, 28–37.

    Google Scholar 

  7. D. Dor and U. Zwick. Finding the αn th largest element. Combinatorica, 16, 1996, 41–58.

    Google Scholar 

  8. D. Dor and U. Zwick. Median selection requires (2+ε)n comparisons. Technical Report 312/96, April 1996, Department of Computer Science, Tel Aviv University.

    Google Scholar 

  9. F. Fussenegger and H. N. Gabow. A counting approach to lower bounds for selection problems. J. ACM, 26, 1978, 227–238.

    Google Scholar 

  10. A. Hadian and M. Sobel. Selecting the t th largest using binary errorless comparisons. Colloquia Mathematica Societatis János Bolyai, 4, 1969, 585–599.

    Google Scholar 

  11. L. Hyafil. Bounds for selection. SIAM J. on Computing, 5, 1976, 109–114.

    Google Scholar 

  12. J. W. John. The Complexity of Selection Problems. PhD thesis, University of Wisconsin at Madison, 1985.

    Google Scholar 

  13. D. G. Kirkpatrick. Topics in the complexity of combinatorial algorithms. Tech. Rep. 74, Dept. of Computer Science, University of Toronto, 1974.

    Google Scholar 

  14. D. G. Kirkpatrick. A unified lower bound for selection and set partitioning problems. J. ACM, 28, 1981, 150–165.

    CrossRef  Google Scholar 

  15. S. S. Kislitsyn. On the selection of the k th element of an ordered set by pairwise comparisons. Sibirsk. Mat. Zh., 5, 1964, 557–564. (In Russian.)

    Google Scholar 

  16. D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-Wesley, Reading, MA, 1973.

    Google Scholar 

  17. T. Motoki. A note on upper bounds for the selection problem. Inf. Proc. Lett., 15, 1982, 214–219.

    Google Scholar 

  18. J. I. Munro and P. V. Poblete. A lower bound for determining the median. Technical Report Research Report CS-82-21, University of Waterloo, 1982.

    Google Scholar 

  19. V. Pratt and F. F. Yao. On lower bounds for computing the i th largest element. In Proc. 14th IEEE Symp. on Switching and Automata Theory, 1973, 70–81.

    Google Scholar 

  20. P. V. Ramanan and L. Hyafil. New algorithms for selection. J. Algorithms, 5, 1984, 557–578.

    Google Scholar 

  21. A. Schönhage, M. S. Paterson, and N. Pippenger. Finding the median. J. Comput. Syst. Sci., 13, 1976, 184–199.

    Google Scholar 

  22. J. Schreier. On tournament elimination systems. Mathesis Polska, 7, 1932, 154–160. (In Polish.)

    Google Scholar 

  23. F. F. Yao. On lower bounds for selection problems. Technical Report MAC TR-121, M.I.T., 1974.

    Google Scholar 

  24. C. K. Yap. New upper bounds for selection. Comm. ACM, 19, 1976, 501–508.

    Google Scholar 

  25. C. K. Yap. New lower bounds for medians and related problems. Computer Science Report 79, Yale University, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Paterson, M. (1996). Progress in selection. In: Karlsson, R., Lingas, A. (eds) Algorithm Theory — SWAT'96. SWAT 1996. Lecture Notes in Computer Science, vol 1097. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-61422-2_146

Download citation

  • DOI: https://doi.org/10.1007/3-540-61422-2_146

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61422-7

  • Online ISBN: 978-3-540-68529-6

  • eBook Packages: Springer Book Archive