Making an arbitrary filled graph minimal by removing fill edges

  • Jean R. S. Blair
  • Pinar Heggernes
  • Jan Arne Telle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1097)


We consider the problem of removing fill edges from a filled graph G to get a minimal chordal supergraph M of the original graph G; thus G\(\subseteq\)M\(\subseteq\)G. We show that a greedy strategy can be applied if fill edges are processed for removal in the reverse order of their introduction. For a filled graph with f fill edges and e original edges, we give a simple O(f(e + f)) algorithm which solves the problem and computes a corresponding minimal elimination ordering. We believe that in practice the runtime of our algorithm is usually better than the worst-case bound of O(f(e+f)).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.Agrawal, P.Klein, and R.Ravi. Cutting down on fill using nested dissection: provably good elimination orderings. In J. A. George, J. R. Gilbert, and J. W. H. Liu, editors, Sparse matrix computations: Graph theory issues and algorithms, pages 31–55. Springer Verlag, 1993. IMA Volumes in Mathematics and its Applications, Vol. 56.Google Scholar
  2. 2.
    C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic database systems. J. Assoc. Comput. Mach., 30:479–513, 1983.Google Scholar
  3. 3.
    F. R. K. Chung and D. Mumford. Chordal completions of planar graphs. J. Comb. Theory, 31:96–106, 1994.Google Scholar
  4. 4.
    E. Dahlhaus and M. Karpinski. An efficient parallel algorithm for the minimal elimination ordering of an arbitrary graph. Proceedings FOCS, pages 454–459, 1989.Google Scholar
  5. 5.
    R. E. England, J. R. S. Blair, and M. G. Thomason. Independent computations in a probablistic knowledge-based system. Technical Report CS-90-128, Department of Computer Science, The University of Tennessee, Knoxville, Tennessee, 1991.Google Scholar
  6. 6.
    A. George and J.W-H. Liu. Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.Google Scholar
  7. 7.
    S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical structures and their applications to expert systems. J. Royal Statist. Soc., ser B, 50:157–224, 1988.Google Scholar
  8. 8.
    J. G. Lewis, B. W. Peyton, and A. Pothen. A fast algorithm for reordering sparse matrices for parallel factorization. SIAM J. Sci. Stat. Comput., 10:1156–1173, 1989.Google Scholar
  9. 9.
    J. W-H. Liu and A. Mirzaian. A linear reordering algorithm for parallel pivoting of chordal graphs. SIAM J. Disc. Math., 2:100–107, 1989.Google Scholar
  10. 10.
    T. Ohtsuki, L.K. Cheung, and T. Fujisawa. Minimal triangulation of a graph and optimal pivoting ordering in a sparse matrix. J. Math. Anal. Appl., 54:622–633, 1976.Google Scholar
  11. 11.
    B. W. Peyton. Some applications of clique trees to the solution of sparse linear systems. PhD thesis, Dept. of Mathematical Sciences, Clemson University, 1986.Google Scholar
  12. 12.
    D. J. Rose. A graph-theoretic study of the numerical solution of sparse positive definite systems of linear equations. In R. C. Read, editor, Graph Theory and Computing, pages 183–217. Academic Press, 1972.Google Scholar
  13. 13.
    D.J. Rose, R.E. Tarjan, and G.S. Lueker. Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput., 5:266–283, 1976.CrossRefGoogle Scholar
  14. 14.
    R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput., 13:566–579, 1984.CrossRefGoogle Scholar
  15. 15.
    M. Yannakakis. Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth., 2:77–79, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jean R. S. Blair
    • 1
  • Pinar Heggernes
    • 2
  • Jan Arne Telle
    • 2
  1. 1.United States Military AcademyWest Point
  2. 2.Department of InformaticsUniversity of BergenNorway

Personalised recommendations