On sharply bounded length induction

  • Jan Johannsen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1092)


We construct models of the theory L 2 0 : = BASIC + Σ 0 b -LIND: one where the predecessor function is not total and one not satisfying Σ 0 2 -PIND, showing that L 2 0 is strictly weaker that S 2 0 . The construction also shows that S 2 0 is not ∀ 0 b -axiomatizable.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.Google Scholar
  2. 2.
    S. R. Buss. A note on bootstrapping intuitionistic bounded arithmetic. In P. Aczel, H. Simmons, and S. S. Wainer, editors, Proof Theory, pages 149–169. Cambridge University Press, 1992.Google Scholar
  3. 3.
    S. R. Buss and A. Ignjatović. Unprovability of consistency statements in fragments of bounded arithmetic. Annals of Pure and Applied Logic, 74:221–244, 1995.Google Scholar
  4. 4.
    F. Ferreira. Some notes on subword quantification and induction thereof. Typeset Manuscript.Google Scholar
  5. 5.
    P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetic. Springer Verlag, Berlin, 1993.Google Scholar
  6. 6.
    G. Takeuti. Sharply bounded arithmetic and the function a − 1. In Logic and Computation, volume 106 of Contemporary Mathematics, pages 281–288. American Mathematical Society, Providence, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Jan Johannsen
    • 1
  1. 1.Universität Erlangen-NürnbergGermany

Personalised recommendations