On the modal logic K plus theories

  • Alain Heuerding
  • Stefan Schwendimann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1092)


K + T is the prepositional modal logic K with the elements of the finite set T as additional axioms.

We develop a sequent calculus that is suited for proof search in K + T and discuss methods to improve the efficiency. An implementation of the resulting decision procedure is part of the Logics Workbench LWB.

Then we show that — in contrast to K, KT, S4 — there are theories T and formulas A where a counter-model must have a superpolynomial diameter in the size of T plus A.

In the last part we construct an embedding of S4 in K + T.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Laurent Catach. Tableaux: A general theorem prover for modal logics. Journal of Automated Reasoning, 7:489–510, 1991.Google Scholar
  2. 2.
    Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht, 1983.Google Scholar
  3. 3.
    Melvin Fitting. First-order modal tableaux. Journal of Automated Reasoning, 4:191–213, 1988.Google Scholar
  4. 4.
    Rajeev Goré. Tableau methods for modal and temporal logics. Technical report, TR-15-95, Automated Reasoning Project, Australian National University, Canberra, Australia, 1995. To appear in Handbook of Tableau Methods, Kluwer, 199?Google Scholar
  5. 5.
    Rajeev Goré, Wolfgang Heinle, and Alain Heuerding. Relations between propositional normal modal logics: an overview. Submitted.Google Scholar
  6. 6.
    Joseph Y. Halpern and Yoram Moses. A guide to completeness and complexity for modal logics of knowledge and belief. Artificial Intelligence, 54:319–379, 1992.Google Scholar
  7. 7.
    Alain Heuerding, Gerhard Jäger, Stefan Schwendimann, and Michael Seyfried. Propositional logics on the computer. In Theorem Proving with Analytic Tableaux and Related Methods, LNCS 918, 1995.Google Scholar
  8. 8.
    Richard E. Ladner. The computational complexity of provability in systems of modal propositional logic. SIAM Journal on Computing, 6(3):467–480, 1977.Google Scholar
  9. 9.
    Ilkka Niemelä and Heikki Tuominen. Helsinki logic machine: A system for logical expertise. Technical report, Digital Systems Laboratory, Department of Computer Science, Helsinki University of Technology, 1987.Google Scholar
  10. 10.
    F. Oppacher and E. Suen. Harp: A tableau-based theorem prover. Journal of Automated Reasoning, 4:69–100, 1988.Google Scholar
  11. 11.
    Dan Sahlin, Torkel Franzén, and Seif Haridi. An intuitionistic predicate logic theorem prover. Journal of Logic and Computation, 2(5):619–656, 1992.Google Scholar
  12. 12.
    Kurt Schütte. Vollständige Systeme modaler und intuitionistischer Logik. Springer, 1968.Google Scholar
  13. 13.
    Alasdair Urquhart. Complexity of proofs in classical propositional logic. In Yiannis N. Moschovakis, editor, Logic from Computer Science, pages 597–608. Springer, 1992.Google Scholar
  14. 14.
    Lincoln Wallen. Automated Proof Search in Non-Classical Logics. M.I.T. Press, Cambridge, Massachusetts, 1990.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Alain Heuerding
    • 1
  • Stefan Schwendimann
    • 1
  1. 1.Institut für Informatik und angewandte MathematikUniversität BernSwitzerland

Personalised recommendations