Advertisement

Efficient deterministic algorithms for embedding graphs on books

  • Farhad Shahrokhi
  • Weiping Shi
Session 5
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1090)

Abstract

We derive deterministic polynomial time algorithms for book embedding of a graph G = (V, E), ¦V¦ = n and ¦E¦ = m. In particular, we present the first deterministic polynomial time algorithm to embed any bipartite graph in \(O(\sqrt m )\)pages. We then use this algorithm to embed, in polynomial time, any graph G in \(O(\sqrt {\delta ^ * (G) \cdot m} )\)pages, where δ*(G) is the largest minimum degree over all subgraphs of G. Our algorithms are obtained by derandomizing the probabilistic proofs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Alon, J. H. Spencer and P. Erdös, The Probabilistic Method, Wiley and Sons, New York, 1992.Google Scholar
  2. 2.
    F. Bernhart and B. Kainen, The book thickness of a graph, J. Combin. Theory, B27 (1979), 320–331.Google Scholar
  3. 3.
    F. R. K. Chung, F. T. Leighton and A. Rosenberg, Embedding graphs in books: A layout problem with applications to VLSI design, SIAM J. Alg. Disc. Meth., 8 (1987) 33–58.Google Scholar
  4. 4.
    L. Heath and S. Istrail, The page number of genus g graph is O(g), J. ACM 39 (1992), 479–500.Google Scholar
  5. 5.
    M. R. Garey, D. S. Johnson, G. L. Miller and C. H. Papadimitriou, The complexity of coloring circular arc graphs and chords, SIAM J. Alg. Disc. Meth., 1 (1980) 33–58.Google Scholar
  6. 6.
    S. M. Malitz, On the page number of graphs, Journal of Algorithms, 17 (1) (1994), 71–84.Google Scholar
  7. 7.
    S. M. Malitz, Genus g graphs have pagenumber O(√g), Journal of Algorithms, 17 (1) (1994), 85–109.Google Scholar
  8. 8.
    D. W. Matula and L. L. Beck, Smallest-last ordering and clustering and graph coloring algorithms, J. ACM 30 (1983), 417–427.Google Scholar
  9. 9.
    G. Szekeres and H. S. Wilf, An inequality for the chromatic number of a graph, J. Comb. Theory 4 (1968), 1–3.Google Scholar
  10. 10.
    W. Unger, On the k-coloring of circle graphs, In Proc. 5th Annual Sympo. on Theoretical Aspects of Computer Science, 1988, 61–71.Google Scholar
  11. 11.
    L. Valient, On the complexity of counting the matching, Theoretical Computer Science 8 (1979) 189–201.CrossRefGoogle Scholar
  12. 12.
    A. Wigderson, The complexity of the Hamiltonian circuit problem for maximal planar graphs, EECS Report 298, Princeton University, 1982.Google Scholar
  13. 13.
    M. Yannakakis, Embedding planar graphs in four pages, J. Computer and System Science 38 (1989), 36–67.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Farhad Shahrokhi
    • 1
  • Weiping Shi
    • 1
  1. 1.Department of Computer ScienceUniversity of North TexasDentonUSA

Personalised recommendations