Straight skeletons for general polygonal figures in the plane

  • Oswin Aichholzer
  • Franz Aurenhammer
Session 3
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1090)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AAAG]
    O. Aichholzer, D. Alberts, F. Aurenhammer, and B. Gärtner, A novel type of skeleton for polygons, J. Universal Comput. Sci. 1 (1995), 752–761.Google Scholar
  2. [A]
    F. Aurenhammer, Voronoi diagrams — a survey of a fundamental geometric data structure, ACM Computing Surveys 23, 3 (1991), 345–405.CrossRefGoogle Scholar
  3. [AK]
    F. Aurenhammer and R. Klein, Voronoi Diagrams, in: J.R. Sack and G. Urrutia (eds.), Handbook on Computational Geometry, Elsevier, to appear.Google Scholar
  4. [CD]
    J. Canny and B. Donald, Simplified Voronoi diagrams, Discrete & Computational Geometry 3 (1988), 219–236.Google Scholar
  5. [ES]
    H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements, Discrete & Computational Geometry 1 (1986), 25–44.Google Scholar
  6. [G]
    C. Gold, personal communication, 1995.Google Scholar
  7. [KM]
    T.C. Kao and D.M. Mount, An aJgorithm for computing compacted Voronoi diagrams defined by convex distance functions, Proc. 3rd Canadian Conf. Computational Geometry (1991), 104–109.Google Scholar
  8. [Ki]
    D.G. Kirkpatrick, Efficient computation of continuous skeletons, Proc. 20th Ann. IEEE Symp. FOCS (1979), 18–27.Google Scholar
  9. [Kl]
    R. Klein, Concrete and Abstract Voronoi diagrams, Springer LNCS 400 (1989).Google Scholar
  10. [L]
    D.T. Lee, Medial axis transformation of a planar shape, IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-4 (1982), 363–369.Google Scholar
  11. [LD]
    D.T. Lee and R.L. Drysdale, Generalization of Voronoi diagrams in the plane, SIAM J. Computing 10 (1981), 73–87.Google Scholar
  12. [MKS]
    M. McAllister, D.G. Kirkpatrick, and J. Snoeyink, A compact piecewise-linear Voronoi diagram for convex sites in the plane, Discrete & Computational Geometry 15 (1996), 73–105.Google Scholar
  13. [PR]
    J.L. Pfaltz and A. Rosenfeld, Computer representation of planar regions by their skeletons, Comm. ACM 10, 2 (1967), 119–25.Google Scholar
  14. [Y]
    C.-K. Yap, An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments, Discrete & Computational Geometry 2 (1988), 365–393.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Oswin Aichholzer
    • 1
  • Franz Aurenhammer
    • 1
  1. 1.Institute for Theoretical Computer ScienceGraz University of TechnologyGrazAustria

Personalised recommendations