O(n log n)-average-time algorithm for shortest network under a given topology

  • Guoliang Xue
  • D. -Z. Du
Session 1
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1090)


In 1992, F.K. Hwang and J.F. Weng published an O(n2) operation algorithm for computing the shortest network under a given full Steiner topology interconnecting n fixed points in the Euclidean plane. The Hwang-Weng algorithm can be used to substantially improve existing algorithms for the Steiner minimum tree problem because it reduces the number of different Steiner topologies to be considered dramatically. In this paper, we prove that the Hwang-Weng algorithm can be improved to use O(n log n) operations in average.


Analysis of algorithms Steiner minimum trees shortest network under a given topology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.J. Cockayne and D.E. Hewgill, Exact computation of Steiner minimal trees in the Euclidean plane, Information Processing Letters, Vol. 22(1986), pp. 151–156.Google Scholar
  2. 2.
    D.-Z. Du and F.K. Hwang, A proof of Gilbert-Pollak's conjecture on the Steiner ratio, Algorithmica, Vol. 7(1992), pp. 121–135.Google Scholar
  3. 3.
    D.-Z. Du, Y. Zhang and Q. Feng, On better heuristic for Euclidean Steiner minimum trees, In Proc. 32nd IEEE Symp. Found. Comp. Sci. (1991), pp. 431–439.Google Scholar
  4. 4.
    M.R. Garey, R.L. Graham and D.S. Johnson, The complexity of computing Steiner minimal trees, SIAM Journal on Applied Mathematics, Vol. 32(1977), pp. 835–859.Google Scholar
  5. 5.
    E.N. Gilbert and H.O. Pollak, Steiner minimal trees, SIAM Journal on Applied Mathematics, Vol. 16(1968), pp. 1–29.Google Scholar
  6. 6.
    F.K. Hwang, A linear time algorithm for full Steiner trees, Operations Research Letters, Vol. 4(1986), pp. 235–237.Google Scholar
  7. 7.
    F.K. Hwang, D.S. Richards and P. Winter, The Steiner Tree Problem, North-Holland, 1992.Google Scholar
  8. 8.
    F.K. Hwang and J.F. Weng, The shortest network under a given topology, Journal of Algorithms, Vol. 13(1992), pp. 468–488.Google Scholar
  9. 9.
    Z.A. Melzak, On the problem of Steiner, Canadian Mathematical Bulletin, Vol. 16(1961), pp. 143–148.Google Scholar
  10. 10.
    D. Trietsch and F.K. Hwang, An improved algorithm for Steiner trees, SIAM Journal on Applied Mathematics, Vol. 50(1990), pp. 244–263.Google Scholar
  11. 11.
    P. Winter, An algorithm for the Steiner problem in the Euclidean plane, Networks, Vol. 15(1985), pp. 323–345.Google Scholar
  12. 12.
    A. Zelikovsky, An 11/6-approximation algorithm for the network Steiner problem, Algorithmica, Vol. 9(1993), pp. 463–470.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Guoliang Xue
    • 1
  • D. -Z. Du
    • 2
    • 3
  1. 1.Department of Computer Science and Electrical EngineeringThe University of VermontBurlingtonUSA
  2. 2.Department of Computer ScienceUniversity of MinnesotaMinneapolisUSA
  3. 3.Institute of Applied MathematicsChinese Academy of SciencesBeijingChina

Personalised recommendations