Advertisement

An actor-based architecture for intelligent tutoring systems

  • Claude Frasson
  • Thierry Mengelle
  • Esma Aïmeur
  • Guy Gouardères
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1086)

Abstract

The evolution of intelligent tutoring systems (ITS) toward the use of multiple learning strategies calls on a multi-agent architecture. We designed an ITS where several agents assume different pedagogical roles; consequently, we called them actors. We first describe the conceptual architecture of an actor which allows it to be reactive, instructable, adaptive and cognitive. We then provide a detailed view of this architecture and show how it functions with an example involving the different actors of a new learning strategy, the learning by disturbing strategy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aïmeur, E., Frasson, C., Stiharu-Alexe, C.: Towards New Learning Strategies In Intelligent Tutoring Systems, Brazilian Conference of Artificial Intelligence SBIA'95 (1995) 121–130Google Scholar
  2. 2.
    Altermann, R., Zito-Wolf, R.: Agents, Habitats and Routine Behavior, Thirteen International Conference On Artificial Intelligence (1993)Google Scholar
  3. 3.
    Castelfranchi, C.: Garanties for autonomy in cognitive agent architecture. In Wooldridge, M. & Jennings, N.R. (Eds), Intelligent Agents: Theories, Architectures and Languages, LNAI, vol 890, Springer Verlag: Heidelberg, Germany (1995) 56–70.Google Scholar
  4. 4.
    Chan, T.W., Baskin, A.B.: Learning Companion Systems. In C. Frasson & G. Gauthier (Eds.) Intelligent Tutoring Systems: At the Crossroads of Artificial Intelligence and Education, Chapter 1, New Jersey: Ablex Publishing Corporation (1990)Google Scholar
  5. 5.
    Ferguson, I. A.: Touring Machines: An Architecture for Dynamic, Rational, Mobile Agents. PhD Thesis, Clare Hall, University of Cambridge (1992)Google Scholar
  6. 6.
    Gilmore, D., Self, J.: The application of machine learning to intelligent tutoring systems. In J. Self, (Ed.) Artificial Intelligence and Human Learning, Intelligent computer-assisted instruction, New York: Chapman and Hall (1988) 179–196Google Scholar
  7. 7.
    Hayes-Roth, B.: An architecture for adaptive intelligent systems. Artificial Intelligence: special issue on agents and interactivity (1995) 327–365Google Scholar
  8. 8.
    Honavar, V.: Toward learning systems that integrate different strategies and representations. In Symbol Processors and Connectionist Networks for Artificial Intelligence and Cognitive Modelling: Steps toward Principled Integration, Honavar, V. & Uhr, L. (Eds), New York, Academic Press (1994)Google Scholar
  9. 9.
    Huffman, S.B.: Instructable Autonomous Agents. PhD Thesis, University of Michigan, Dept of Electrical Engineering and Computer Science (1994)Google Scholar
  10. 10.
    Mengelle, T.: Etude d'une architecture d'environnements d'apprentissages basés sur le concept de préceptorat avisé. PhD Thesis, University of Toulouse III (1995)Google Scholar
  11. 11.
    Morignot P., Hayes-Roth, B.: Why does an agent act?. In M.T. Cox & M. Freed (Eds.), Proceedings of the AAAI Spring Symposium on Representing Mental States Mechanisms. Menlo Park, AAAI (1995) in press.Google Scholar
  12. 12.
    Palthepu, S., Greer, J., McCalla, G.: Learning by Teaching. The Proceedings of the International Conference on the Learning Sciences, AACE (1991)Google Scholar
  13. 13.
    Van Lehn K., Ohlsson, S., Nason, R.: Application of simulated students: an exploration. Journal of artificial intelligence in education, vol 5, n 2 (1994) 135–175Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Claude Frasson
    • 1
  • Thierry Mengelle
    • 1
  • Esma Aïmeur
    • 1
  • Guy Gouardères
    • 2
  1. 1.Département d'informatique et de recherche opérationnelleUniversité de MontréalMontréalCanada
  2. 2.IUT InformatiqueUniversité de PauBayonneFrance

Personalised recommendations