An architecture for a deductive Fuzzy Relational Database

  • Olga Pons
  • Juan M. Medina
  • Juan C. Cubero
  • Amparo Vila
Communications Session 6A Intelligent Information Systems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1079)


This paper reports on the architecture of a Fuzzy Relational DBMS (FRDBMS) with deduction capabilities, whose main characteristics are: 1) It is built on the basis of a theoretical model for fuzzy relational databases and a theoretical model for logic fuzzy databases; 2) It is implemented entirely on classical RDBMS, using their resources; 3) It conserves all the operations of the host RDBMS and gives them more power, adding new capabilities for dealing with ”fuzzy” and ”intensive” information; 4) It provides a deductive fuzzy language, DFSQL, and a processor which permits the translation of each DFSQL statement into one or more SQL statements, which can be used by the host RDBMS; 5) It offers a relational representaion of the rules that define an intensive table, in such a way that all necessary information to perform deduction is stored in tables. 6) This system needs to interact with a deduction module which performs the computation of intensive tables.


Intelligent Information Systems Fuzzy relational database Deductive database 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Bosc, M. Galibourg, G. Hamon. Fuzzy Querying with SQL: Extensions and Implementation Aspects, Fuzzy Sets and Systems. v.28 pp. 333–349. (1988)Google Scholar
  2. 2.
    B.P. Buckles, F.E. Petry. A Fuzzy Representation of Data for Relational Databases, Fuzzy Sets and Systems, 7. 213–226. (1982)Google Scholar
  3. 3.
    J. M. Medina, M. A. Vila, J. C. Cubero, O. Pons. Towards the Implementation of a Generalized Fuzzy Relational Database Model, To appear in Fuzzy Sets & Systems.Google Scholar
  4. 4.
    J. M. Medina, O. Pons, M. A. Vila. GEFRED. A Generalized Model of Fuzzy Relational Databases, Information Sciences, 76, 1–2, pp 87–109. (1994)Google Scholar
  5. 5.
    J. M. Medina, J. C. Cubero, O. Pons, M. A. Vila. Fuzzy Knowledge Representation in Relational Databases, Technical Report #DECSAI-94112. November. (1994)Google Scholar
  6. 6.
    O. Pons, M. A. Vila, J. M. Medina. Handling Imprecise Medical Information in the Framework of Logic Fuzzy Databases, Fuzzy Systems & A. I. Vol. III. Nr. 1/1994. Ed. Academiei Romane. (1994)Google Scholar
  7. 7.
    H. Prade, C. Testemale. Generalizing Database Relational Algebra for the Treatment of Incomplete/Uncertain Information and Vague Queries, Information Sciences, 34. 115–143. (1984)Google Scholar
  8. 8.
    M. Umano. Freedom-O: A Fuzzy Database System, Fuzzy Information and Decision Processes. Gupta-Sanchez edit. North-Holland Pub. Comp. (1982)Google Scholar
  9. 9.
    M. A. Vila, J. C. Cubero, J. M. Medina, O. Pons. Logic and Fuzzy Relational Databases: A New Language and a New Definition. In Fuzzy Sets and Possibility Theory in Databases Management Systems. P. Bosc and J. Kacprzyk Eds. Physica-Verlag. (1995)Google Scholar
  10. 10.
    M. A. Vila, J. C. Cubero, J. M. Medina, O. Pons. Towards the Computer Implementation of a Fuzzy Relational and Deductive Database System, Proceedings of the FUZZ-IEEE/IFES'95 workshop on Fuzzy Relational Systems and Information Retrieval, Yokohama, Japan. March (1995).Google Scholar
  11. 11.
    M. Zemankova, A. Kandel. Fuzzy Relational Data Bases — A Key to Expert Systems, Verlag TUV Rheinland. (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Olga Pons
    • 1
  • Juan M. Medina
    • 1
  • Juan C. Cubero
    • 1
  • Amparo Vila
    • 1
  1. 1.Dept. of Computer Sciences and Artificial IntelligenceUniversity of GranadaGranadaSpain

Personalised recommendations